




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于道路图像的能见度检测综述 靳引利作者简介:靳引利(1972)男,副教授,硕士生导师,研究方向为交通系统分析与仿真、交通机电系统、交通信息系统、交通控制与评估研究、软件工程(yljin );许倩(1990)女,在读硕士,控制理论与控制工程专业 (xuqianchn,2),许倩1)(长安大学电子与控制工程学院,陕西 西安710064 ;长安大学 电子与控制工程学院,陕西 西安710064 ) 摘要:能见度不仅影响道路通行能力,而且极易引发交通事故,威胁生命与财产安全,故监测与检测能见度是保证道路通畅与安全的重要手段。传统能见度检测多依赖气象设备,安装与维护成本较高,难以高密度布设;随道路监控系
2、统的应用,为以图像处理的能见度研究提 供了条件。通过介绍能见度相关理论基础,对比目测、器测、图像检测的方法特点。围绕道 路交通环境,着重讨论采用基于图像特征法、模型学习的白天能见度检测及光源特征推演的 夜间能见度检测研究进展、结果,并以此为基础阐述了道路交通领域能见度检测的研究应用 前景。关键字:能见度检测;图像处理;特征法;模型学习;Summary on Visibility Detection Base on Road Image JIN Yin-li 12, XU Qian 1(College of Electrical and Control Engineering, Chang
3、9;an University, Xi'an, 710064 ) Abstract: Visibility not only affects the capacity of freeway, but also easily leads to accidents, threatening life and property safety. Traditional visibility detecting depends on meteorological facilities, but it has a high cost on installat ion and maintenance
4、 of the facilities. Therefore, it' sdifficult to lay meteorological facilities with high density in the freeway. With the freeway monitoring system being widely using, it makes a foundation for study visibility based on images.Describe The basic theory research, and compare the principle, the ad
5、vantages and disadvantages of the three methods-visual method, instrumental method, image detection method; Around the road traffic environment, discuss the status of daytime, nighttime visibility detection, and elaborate on the basis of trends in the transport sector application visibility detected
6、 using image processing research.Key words: visibility detection, image processing, feature detection, model learning0引言能见度是衡量大气透明度的物理量,同时也是重要的交通气象观测要素之一。在雾、沙尘、霾、大风等恶劣天气影响下道路环境能见度较低,导致行车环境的可视性与辨识度降低,驾驶员通过视觉获得周边信息量降低,对行车安全构成威胁,因此监测与检测能见度是预防低能见度安全隐患的重要手段。特别是在具备高速度、大流量特性的高速公路上,出现雨、 雪、大雾等恶劣气象时,低能见度对驾驶员视
7、觉干扰严重,极易引发交通事故,且往往会引起连锁反应,导致严重追尾事件或重大人员伤亡事故。因此及时与准确掌握道路能见度是关系到道路使用者生命、财产安全的大事,也是道路运营者需要全力解决的问题。本文通过介绍国内外道路交通领域的能见度检测方法,着重于综述基于图像处理的能见度研究状况,期望全面了解行业内该领域现状,并对其发展起到推进作用1。1能见度定义与检测方法1.1 能见度定义国际照明委员会 CIE (International Commission on Illumination)对能见度定义1为在人肉眼没有任何帮助的条件下,所能识别物体的最大距离称为当前能见距离。我国在相关气象规范23中对能见度
8、也进行了定义,即白天指视力正常(对比阈值为0.05)的人,在当时的天气条件下,能够从天空背景中看到和辨认的目标物(黑色、大小适度)的最大水平距离(城;夜间指中等强度的发光体能被看到和识别的最大水平距离( 城。然而能见度定义中未明确提出对目标物的形状、具体大小、观测角度等方面要求4。目前在研究与应用中,能见度定义成立是基于多个假设条件:观测时间段,主要集中在白昼;观测者视力正常;观测角度为水平方向;背景为天空;选择亮度较低的目标物,多为黑体物体且大小适中。1.2 能见度检测方法能见度检测方法主要分为三类:目测法、器测法、图像视觉特征检测法5,通过对比三种检测方法的原理、优缺点67可得到表1。表1
9、能见度检测方法对比Tab.1 Comparison of visibility detection methods方法原理优点缺点目测法通过人眼观测,依靠经 验对能见度估测。方法较为原始,操 作简单,经济,能 够反映一定的能见 度状况,在某些场 合仍然在用。属于主观判断过程,缺之客观性; 人眼在观测中存在一定的盲区, 当 光线或亮度低于一定的阈值时,人 眼对物体的可辨性降低,检测误差 较大;同时观测频率受限。器测法通过气象检测设备测 量一定空间范围的气 象参数,得到大气消光 系数,计算能见度值。 主要检测设备有透射 仪与散射仪。测量精度相对较 高,适合对能见度 测量要求较局的场 合。安装与维修
10、费用昂贵,米样范围有 限,对于交通上常出现局部“小气 候”,器测法较难反映整体路段能 见度信息,存在检测局限性;测量 的可靠性受硬件系统的稳定性影 响,对安装环境有一定技术要求。图像视 觉特征 法检测 法通过提取采集的图像 特征,分析特征参数与 能见度的关系,反演能 见度值。米集设备有车载摄 像机与路侧摄像 机,应用场合较为 灵活;测量结果比 较可靠。检测精度受图像质量的影响较大; 对检测算法与图像处理技术有较 局的要求。由上表可知,目测法主观性强, 精确度较低;器测法精度高,能够满足对能见度的检测 要求,但是费用较高,不适用于密集型布设。而图像视觉特征法精确度与算法关联紧密,且对图像采集设施
11、有依赖性。但是在道路交通领域,可以凭借路侧监控或者车载摄像机等图像 采集设备构建低成本能见度检测平台,故基于图像处理的能见度检测具有很大的研究价值与发展空间。2能见度检测理论基础根据能见度的定义,各研究人员在能见度测量或计算方面提出了一定的理论基础。然而白天与夜间能见度定义不同,故能见度的检测理论也存在白天与夜间的差异。(1) 白天能见度计算1924年,Koschmieder提出的Koschmieder定律将大气能见度与大气消光系数联系起来, 形成了大气能见度定量计算的理论基础,即设观测目标物亮度L与目标物自身亮度 Lq和背景环境亮度Lb之间关系满足L = Lo+ Lb(1-ex),其中仃为观
12、测时大气消光系数,x为观测点与目标物之间距离。Duntley在Koschmieder定律的基础上得到了亮度对比关系C=C0 e*,其中C为目C标物的视凫度与背景凫度差,Co为目标物的固有亮度与背景亮度差,则5二,记C0C=,称名为视觉对比阈值。根据国际民航组织推荐名为0.05,即得到白天能见度为Co2.996VR 二。C7(2) 夜间能见度计算Allard定律是测量夜间大气能见度的基础,夜间一般选取灯光为目标物,且夜间能见度以灯光到达观测者眼中的照度来衡量。根据Allard定律,在夜间以灯光源为目标物时,大气消光系数为仃,光强为|0的光源在距离光源x处产生的照度为E ,满足E =与, x那么当
13、夜间光源到达观测者眼中的照度恰好为眼睛照度阈值巳时,则此时能见度 V满足E = -1°- e 力匚 oo e oV3能见度检测发展现状目前基于图像处理的能见度检测多集于对白天检测,且主要围绕以下两类方法:(1)特征检测法,即通过检测地平线附近目标物和对应水平天空亮度差值之比,或寻找图像特征信息与大气消光系数之间的关系计算能见度;(2)模型学习法,即通过机器学习或样本训练构建图像与能见度之间的对应关系模型,利用模型匹配或计算待测图像能见度。在特征检测中比较直接的方法是通过检测固定目标物或标记的图像特征,建立目标物图像特征与能见度关系模型,反演计算能见度值。Kwon T M8通过检测视频
14、图像中人为设置的多个目标物得到亮度与距离关系计算能见度,其中测量精度与目标物设置稀疏程度有关。 该方法需要人为安装目标物或标记目标物,成本较高且操作比较繁琐。在研究的进一步推动下产生了无需人为设置目标物的检测方法,陈启美等人9结合摄像机标定,利用人眼可分辨率获取图像兴趣域像素点计算最远距离,并通过 Kalman滤除检测 干扰,实验表明经过 Kalman滤波后检测结果比人眼观测值略小,差分均值为3.87,方差为5.57。同时他们又提出了通过摄像机自标定技术恢复图像距离信息410,建立图像虚拟观测目标物,采用检测虚拟目标物的边缘,拟合虚拟目标和距离曲线,结合人眼可分辨计算能见度,实验检测结果与人眼
15、及能见度仪检测相比误差在10%以内。该方法避免了人为安装或标记目标物,降低了检测成本与操作要求,但提高了摄像机的标定要求。此外还可通过检测图像灰度或像素拐点,建立拐点与消光系数关系,结合摄像机模型与大气对比度衰减模型计算能见度。其中,陈启美等人111213在摄像机标定基础上,通过提取图像中亮度和高度一致的路面区域,建立路面亮度变化曲线求取拐点进而计算能见度值, 实验检测结果与目测相比较,检测精度可达 94%。宋洪军等人14采用区域搜索算法与纹理 特征提取识别雾天,求取兴趣域像素拐点与消光系数,结合能见度定义计算能见度值,通过实验检测三种场景能见度,表明该算法与人眼观测效果一致,准确率高于86%
16、且检测误差在20m以内。刘建磊等人15提出了拐点线检测滤波器,应用能见度计算模型与拐点检测结 果计算雾天能见度,结果表明该方法与基于区域增长算法相比运行时间与检测误差分别降低 80%和12.2%,提高了雾天能见度检测速度与精度。在何凯明提出暗通道先验知识16的基础上,苗苗17以及郭尚书等5人利用暗通道先验知识估算出透射率,并通过导向滤波优化进而计算消光系数反演能见度,结果说明该方法的检测结果与人工目测数据、气象监控数据基本一致。但是采用暗通道先验知识的方法检测精度 与图像质量关联较大,易受干扰,对图像质量要求较高。综上研究知,图像特征的能见度检测方法以研究单张图像内部特征关联为主,在图像质量与
17、信息理想的条件下检测准确率较 高,而一旦采集的图像道路线形、周边环境等复杂时会算法难度会增大,同时该方法主要针对单帧图像,处理大量图像处理时效率会低。在利用模型学习法的研究中,Hallowell R G等人18提出基于标志图像计算能见度,通过与样本库中已知能见度的图像对比得出待检测图像能见度。Hautiere N等人19通过采集大量场景图像作为样本用于机器学习,研究场景内的物理特性,用非线性数据回归的方式求解能见度。许茜等人20通过提取兴趣域图像特征及向量,训练支持向量回归机构建图像特征 与能见度值之间的关系模型,实现待测图像能见度值的计算,结果表明该方法与常用前向散射仪检测结果基本一致,其中
18、实验中总样本量的90.5%分布在相对误差小于 20%的区域内。夏创文21及Chunxue Liu等人2223提出了一种基于视频的高速公路雾级别检测方法, 采用边缘检测提取出可疑雾区,利用梯度计算和距离变换来区分并分割天空与真实雾区,以雾区HSV颜色空间的统计直方图为颜色特征向量,对一系列视频帧特征提取融合后利用 SVM分类器分类雾等级,结果表明该方法对雾天雾等级检测结果比较理想,准确率达90%以上。模型学习法的特点是需要大量的样本,并且这些样本需要满足一定的完备性,即在相同场景相似时间段的样本中尽可能包含不同能见度条件下拍摄的图片,并包含图像对应的能见度真值,对图像采集要求比较严格。夜间检测主
19、要通过研究图像光源特征推演能见度,Narasimhan等人2425通过求解点光源的传输公式,在已知散射粒子的条件下,计算能见度,但检测范围有限制。Gallen等人2627 采用直接求取光源亮度计算大气消光系数进而得到能见度,该方法侧重理论,未考虑实际应用性。戴庞达等人28分析多次散射条件下光源图像亮度与大气消光系数关系,提出了消除 光源波动的双光源能见度计算方法,实验结果表明在采用35m基线长度,设定观测上限为15000m时,观测误差均小于 20%。并在此基础上他们又提出了基于双光源方法和曲线演化 理论的夜间能见度反演算法29,利用双光源特点分析目标物亮度变化与特征演化曲线关系, 建立目标亮度
20、特征与能见度反演的关系模型计算能见度,并指出在200012000m观测范围内能见度反演值域标准能见度相关性大于0.98。肖韶荣等人30利用避光筒限制CCD相机视角,根据光双源方法检测能见度,实验检测结果显示有背景光下有避光筒和无避光筒时检测 能见度与无背景光下测量结果相关系数分别为0.9113、0.3227,说明添加避光筒可增强抑制背景光噪声的能力,可提高检测准确率。综上所述,白天与夜间的能见度检测主要解决的问题是从图像特征中寻找与能见度相关 信息,包含目标物与背景的亮度差、图像像素与人眼分辨对比、灰度或亮度变化、图像颜色特征分布等。通过从图像中挖掘类似特征信息,在图像成像模型的基础上建立该类
21、信息与大气消光系数关系,从而反演计算能见度值,或是建立该类信息与大量样本训练模型的匹配关系,从而获取能见度值。0.能见度检测研究展望在道路交通领域,基于图像处理的能见度检测技术可以充分利用高速公路监控系统,提高了交通设施资源的利用率,降低能见度的检测成本;依托监控系统可以增大高速公路环境下能见度检测密度,提高对交通气象的监控能力;同时以交通图像获取道路能见度信息, 可以为驾驶员与管理者提供及时、可靠的交通能见度信息,辅助管理进行决策,为高速公路管制及联动控制提供信息保障。且随着图像处理技术进一步发展与应用会出现以下研究应 用:(1)离线检测向在线监测转移,即实现基于监控视频图像的能见度实时计算
22、,为道理管理者与驾驶人员提供实时能见度信息,为保证行车与道路安全提供数据支撑。(2)能见度系统平台搭建,即通过道路监控系统与车载摄像机,搭建以固定和移动式图像采集方式的能见度检测平台,实现道路高密集点的能见度信息监测。(3)单观测点到多观测点能见度的综合分析,即依托高速公路监控系统或者车载摄像机,可选取路段或路线某时段图像信息获取相应能见度,对特殊交通环境,如山区道路、隧道间道路等交通气象开展研究,也可推进对特殊交通气象的研究,如团雾等。参考文献:1 CIE 95-1992.01.01, Contrast and Visibility (1st Edition) S.2 QX/T 114 20
23、10,能见度等级和预报S.3 QX/T 762007,高速公路能见度监测及浓雾的预警预报S.4陈钊正,周庆逵,陈启美.基于小波变换的视频能见度检测算法研究与实现J.仪器仪表学报,2010,31(1):92-98.5郭尚书,齐文新,齐宇.基于暗通道先验的视频能见度测量方法J.计算机与数字工 程,2014,42(4):694-697.6邢向楠,崔岩梅,张富根,谢邦力.能见度测量技术现状及发展趋势综述J.计测技 术,2010,30(5):15-20.7卢家亮,鲁昌华,蒋薇薇,陶志颖,查正兴.数字摄像法测量白天能见度算法设计J.电子测量与仪器学报,2014-11 , 28(11):1262-1267.
24、8 Kwon T M. Atmospheric visibility measurements using video cameras: relative visibilityR. America: University of Minnesota Duluth, 2004.9李勃,董蓉,陈启美.无需人工标记的视频对比道路能见度检测J,计算机辅助设计与图形学学寸艮,2009-11,21(11):1575-1582.10陈钊正,陈启美.基于摄像机自标定的视频对比度能见度检测算法与实现J.电子与信息学寸艮,2010,32(12):2907-2912.11张潇,李勃,陈启美.基于亮度特征的PTZ视频能
25、见度检测算法及实现J.仪器仪表学 报,2011,32(2):382-387.12杨娴,李勃,丁文,陈启美.基于路面亮度特征估算的视频能见度检测系统J.上海交通大学学寸艮,2013,47(8):1257-1263.13吴炜,陈启美.基于路面视亮度差平方 最优化 的视频 能见度检测算 法J.电子与信息 学 报,2014,36(10): 2412-2418.14宋洪军,陈阳舟,告B园园.基于车道线检测与图像拐点的道路能见度估计J.计算机应 用,2012,32(12): 3397-3403.15刘建磊,刘晓亮.基于拐点线的大雾能见度检测算法J.计算机应用,2015,35(2):528-530.16 K
26、aiming He, Jian Sun, Xiaoou Tang. Single Image Haze Removal Using Dark Channel PriorC.IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009:1956-1963.苗苗.基于高清视频的能见度检测技术D.北京:北方工业大学,2012.Hallowell R G, Matthews M P, Pisano P A. Automated extraction of weather variables from camera ima
27、gery。. Proceeding of the 2005 Mid-Continent Transportation Research Symposium, Ames, IA, 2005:1-13.Hautiere N, Babari R, Dumont E. Estimating meteorological visibility using cameras:a probabilistic model-driven approach。. Computer Science, Computer Vision- ACCV,Berlin, 2011: 243-254.许茜,殷绪成,李岩,郝红卫,曹晓钟.基于图像理解的能见度测量方法J.模式识别与人工智能,2013,26(6):543-551.夏创文.高速公路网运行监测若干关键技术研究D.广州:华南理工大学,2013.Chunxue Liu, Xiaobo Lu, Saiping Ji, Wei Geng.A Fog Level Detection Method Based on Image HSV Color HistogramC. Progress in Informatics and Computing (PIC), 2014, 373 - 377.Yang Liu, Xiaobo Lu. Fog
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 耕地出租合同
- 室内空气污染治理委托合同书5篇
- 2025年消费导报报纸代理发行合同9篇
- 货物买卖合同范本模板
- 店中店转让合同协议书
- 包过培训班合同协议书
- 断桥窗合同双方协议书
- 合股种桉树合同协议书
- 芜湖医保协议书
- 混泥土代销合同协议书
- 国际经济与金融合作中的文化差异与应对策略
- 精准结直肠癌外科诊疗专家共识(2025版)解读
- 长寿风险课件
- 2025-2030中国海运拼箱行业市场发展现状及竞争格局与投资前景研究报告
- 2025年三片式球阀项目建议书
- 2025年四川省成都市青羊区中考数学二诊试卷
- 2025年平面设计师专业能力测试卷:平面设计作品集制作与展示策略分析技巧分析试题
- 2025中国临床肿瘤学会CSCO非小细胞肺癌诊疗指南要点解读课件
- 同意开票协议书范本
- 混凝土地面拆除合同协议
- 《数据资源入表白皮书2023》
评论
0/150
提交评论