




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数理统计的基础知识数理统计的基础知识 总体:研究对象的全体。总体:研究对象的全体。通常指研究对象的某项数量指标。通常指研究对象的某项数量指标。组成总体的元素称为个体。组成总体的元素称为个体。16.1、简单随机样本、简单随机样本16.1.1 总体与个体总体与个体16.1.2 16.1.2 样本:样本:来自总体的部分个体来自总体的部分个体 1 1, , n n 如果满足:如果满足:(1 1)同分布性:同分布性: i i,i=1,i=1,n,n与总体同分布与总体同分布. .(2 2)独立性:)独立性: 1 1, , n n 相互独立;相互独立; 则称之为容量为则称之为容量为n n 的简单的简单随机样
2、本,简称样本随机样本,简称样本。而称而称 1 1, , n n 的一次的一次实现为样本观察值,记为实现为样本观察值,记为x x1 1, ,x xn n 总体、样本、样本观察值的关系总体、样本、样本观察值的关系总体总体 样本样本 样本观察值样本观察值 理论分布理论分布 统计是从手中已有的资料统计是从手中已有的资料样本观察值,去推断样本观察值,去推断总体的情况总体的情况总体分布。样本是联系两者的桥梁总体分布。样本是联系两者的桥梁。总体分布决定了样本取值的概率规律,也就是样。总体分布决定了样本取值的概率规律,也就是样本取到样本观察值的规律,因而可以用样本观察值本取到样本观察值的规律,因而可以用样本观
3、察值去推断总体去推断总体16.2 总体矩、样本矩及其关系总体矩、样本矩及其关系16.2.1 总体矩总体矩1kkvE、k阶原点矩2() kkuEE、k阶中心矩把总体的各阶中心矩和原点矩统称为把总体的各阶中心矩和原点矩统称为总体矩总体矩1 样本的原点矩与样本均值样本的原点矩与样本均值111,niikn特别的,得样本均值111nkkiivn、原点矩16.2.2 样本矩样本矩122121012()(),niikukSnSS特别地,时得样本方差样本均方差标准差16.2.3 样本中心矩与样本方差样本中心矩与样本方差112() ,nkkiiun、中心矩16.2.3 样本矩、总体矩及其相互联系样本矩、总体矩及
4、其相互联系212.).nED定理16.1假设总体存在二阶矩,记,(,为来自总体的样本,则样本矩与总体矩有如下联系:212EDn); )22*22*22113),4)1()1niinESESnSn称 为 样 本 修 正 方 差例例16.1 16.1 从某班级的英语期末考试成绩中,随机抽取从某班级的英语期末考试成绩中,随机抽取1010名同学的成绩分别为:名同学的成绩分别为:100100,8585,7070,6565,9090,9595,6363,5050,7777,8686(1 1)试写出总体,样本,样本值,样本容量;)试写出总体,样本,样本值,样本容量;(2 2)求样本均值,样本修正方差及二阶原
5、点矩。)求样本均值,样本修正方差及二阶原点矩。 样本: (1,2,3,10) 样本值:)x ,x ,x(n21=(100,85,70,65,90,95,63,50,77,86) 样本容量:样本容量:=10=1010111(2)(100+85+&+86)=78.11010iixx2*2222111()21.96.97.9 252.519niisxxn10222222211111(100857086 )6326.91010niiiivxxn例例16.2 设总体设总体有分布密度有分布密度121002*21,1( )0.12.xxp xSS ,其它从中抽取样本( , ,)样本均值 的期望和方差
6、;)样本方差与样本修正方差的期望解:分布密度为0110(1)(1)0Exx dxxx dx则01222101(1)(1)6Dxx dxxx dx6001nXD0XE12 , ,) )60099n1nES222 ) )61ES22 * * 其它, , , , , ,) )( (01x0 x10 x1x1xp16.3 统计量及几个重要分布16.3.1 统计量统计量定义:如果定义:如果g( 1, , n )不含不含 未知未知 参数参数,称称样本样本 1, , n 的函数的函数 g( 1, , n )是总体是总体X的一个统计量的一个统计量,16.3.2 四类统计量及其分布四类统计量及其分布16.3.2
7、.1 U U统计量及其分布统计量及其分布2( ,),(0,1)/NUNUn 若则称为统计量 2分布及其临界值分布及其临界值2221121.,(0,1),( ).niidniiNk定义设则称为自由度为n的分布2. 临界值表的结构和使用临界值表的结构和使用 设设 2(n),若对于,若对于 :0 1, 存在存在02 满足满足22,P则称则称2为为2( )n分布的上分布的上 分位点。分位点。22( ; )n 例例16.3 给定给定 =0.05,自由度自由度n=25,求求满足下面等式的临界值满足下面等式的临界值:2221, PP222:( ; )(0.05;25)37.652n解22112211(1;
8、)(0.95;25)14.611PPn *222222(1)(1);nSnSn3 2统计量未知时,已知时?) )( ( ) )( (nX22n1i2i2 1.定义定义 若若 N(0, 1), 2(n), 与与 独立,则独立,则 ( )./tt nk称为自由度为称为自由度为n的的t分布。分布。 记为记为tt(n)、t统计量及分布统计量及分布2.2.临界值表的结构和使用临界值表的结构和使用设T Tt(n)t(n),若对 :0:0 1,00, 满足PTPT t t = ,则称t t 为t(n)t(n)的上侧分位点t例例16.4 给定给定 =0.05,自由度自由度n=20,求满足求满足下面等式的临界值
9、下面等式的临界值:(1) , P ttP tt 22(2) , P ttP tt :(1)( ; )(0.05;20)1.7247ttnt解1.7247P ttP ttt 2(2)(; )(0.025;20)2.0862ttnt22.086t 3 t统计量及其分布统计量及其分布* (1)./tt nSn16.3.2.4 F统计量及其分布统计量及其分布1.定义定义 若若 2(n1), 2(n2), , 独立,则独立,则1122/( ,)./nFF n nn 称为第一自由度为称为第一自由度为n1 ,第二自由度为第二自由度为n2的的F分分布布2. F2. F分布分布临界值表临界值表对于对于 :00 100,满足满足PFPF F F = , 则称则称F F 为为F(nF(n1 1, n, n2 2) )的的上侧上侧 分位点;分位点;记为记为F F( ; n; n1 1, n, n2 2 ) )F12211(1;,)( ;,)FFn nFn n注:注:例例16.5 给定给定 =0.1,自由度自由度n1=10, n2=5,求求满足下面等式的临界值满足下面等式的临界值:21(1) (2) P FP F212(1)( ;,)(0.1;10,5)3.3Fn nF解 112211(2)(1;,)( ;,)12.52(0.1;5,10)Fn nFn nF(4) F 统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育与科技的融合-基于共情的家庭教育创新模式研究
- 教育心理学的实证研究在教学评估中的应用
- 商业智能与教育技术的法律边界探讨
- 重庆市聚奎中学2025届物理高二下期末监测试题含解析
- 基础护士肿瘤科化疗护理考试题库及答案
- 2025年吉林省吉化第一高级中学物理高一下期末预测试题含解析
- 混合现实教育推动教育信息化的新动力
- 教育机器人的多元智能开发与教学实践
- 智能终端在教育信息传播中的作用与价值
- 教育心理学前沿学习理论与教学方法的新思路
- 兴平市生活垃圾焚烧发电项目环评报告
- 琦君散文-专业文档
- 初中数学浙教版九年级上册第4章 相似三角形4.3 相似三角形 全国公开课一等奖
- 主令电器(课用)课件
- DLT 5066-2010 水电站水力机械辅助设备系统设计技术规定
- 湘少版英语六年级下册全册教案
- 测绘生产困难类别细则及工日定额
- 湖南省长郡中学“澄池”杯数学竞赛初赛试题(扫描版含答案)
- 消防系统施工总进度计划
- 2022年广东省中山市纪念中学三鑫双语学校小升初数学试卷
- JJG30-2012通用卡尺检定规程
评论
0/150
提交评论