最新人教版七年级上数学有理数导学案_第1页
最新人教版七年级上数学有理数导学案_第2页
最新人教版七年级上数学有理数导学案_第3页
最新人教版七年级上数学有理数导学案_第4页
最新人教版七年级上数学有理数导学案_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、。2、阅读课本P1和P2三幅图(边阅读边思考教科书中的问题)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生 (1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一

2、个具有相反意义量的例子:。(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“”(读作负)号来表示,如上面的3、8、47。(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)问题:(课本第3页例题)先引导学生分析,再让学生独立完成例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强

3、体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家某年商品进出口总额的增长率;解:(1)这个月小明体重增长_ ,小华体重增长_ ,小强体重增长_ ;(2)六个国家某年商品进出口总额的增长率:美国_ 德国_ 法国_ 英国_ 意大利_ 中国_完成练习P3的T1,T23、归纳只要问题中出现具有相反意义的量,我都可用 和 分别表示它们。1)大于0的数叫做,小于0的数叫做。2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

4、【课堂练习】: 1. P3第1题到第2题(直接做在课本上)。 2小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_,-4万元表示_。3已知下列各数:-,+3065,0,-239;则正数有_;负数有_。4下列结论中正确的是 ( )A0既是正数,又是负数BO是最小的正数C0是最大的负数 D0既不是正数,也不是负数 5给出下列各数:-3,0,+5,+3.1,2004,+2010;其中是负数的有 ( )A2个B3个C4个D5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。【拓展训练】:1零下15,

5、表示为_,比O低4的温度是_。2地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_地,最低处为_地3“甲比乙大-3岁”表示的意义是_。4如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。【总结反思】:课题:1.1正数和负数(2)【学习目标】:1、会用正、负数表示具有相反意义的量;2、通过正、负数学习,培养学生应用数学知识的意识;【学习重点】:用正、负数表示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】一、知识链接. 通过上节课的学习,我们知道在实际生产和生活中存

6、在着两种不同意义的量,为了区分它们,我们用_ 和_ 来分别表示它们。问题:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明。参考例子:温度表示中的零上,零下和零度。二.自主探究阅读思考(课本第4页思考问题)回答:图中正数和负数的含义是什么?你能举一些用正数、负数表示数量的实际例子吗?【课堂练习】1课本第4页练习第1-4题和第5页复习巩固T1-3(分组检查评比)2、分组完成(课本第5页)4-8题然后展示讲评(教师评分10,8,6,4,2,0分,还可适当加分)【要点归纳】1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1)甲冷库的温度是-12°C,乙冷库的温

7、度比甲冷酷低5°C,则乙冷库的温度是 ;2)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?【总结反思】:课题:1.2.1 有理数【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类【导学指导】一、温故知新1、通过两节课的学习,那么你能写出3个不同类的数吗?.(4名学生板书)_二、自主探究问题1:观

8、察黑板上的12个数,我们将这4位同学所写的数做一下分类;分为几类,又该怎样分呢?引导归纳:统称为整数,统称为有理数。问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳 2、正数集合与负数集合所有的正数组成集合,所有的负数组成集合【课堂练习】完成P6练习T1和T2(做在课本上)1.把下列各数填入它所属于的集合的圈内:15, -, -5, , , 0.1, -5.32, -80, 123, 2.333;正整数集合 负整数集合正分数集合 负分数集合2指出下列各数中的正数、负数、整数、分数:-15,+6,-2,-0.9,1,0,0.63,-4.95.【要点归纳】: 有理数

9、分类【拓展训练】1、下列说法中不正确的是( )A既是负数,分数,也是有理数B0既不是正数,也不是负数,但是整数c-2000既是负数,也是整数,但不是有理数DO是正数和负数的分界2、在下表适当的空格里画上“”号有理数整数分数正整数负分数自然数-8是-2.25是是0是【总结反思】:【学习目标】:1、掌握数轴概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,利用数轴上的点表示有理数;3、领会数形结合的重要思想方法;【重点难点】:数轴的概念与用数轴上的点表示有理数;【导学指导】一、知识链接°C、°C、 °C;和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和

10、一根电线杆,试画图表示这一情境? 二、自主探究1、由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗?2、自己动手操作,看看可以表示有理数的直线必须满足什么条件?引导归纳:画数轴需要三个条件,即、方向和长度。【课堂练习】1、请你画好一条数轴 2、利用上面的数轴表示下列有理数 1.5, 2, 2, 2.5, , 0;3、 写出数轴上点A,B,C,D,E所表示的数:4.在你1题中画的数轴上,如果表示有理数的点在原点的左边,那么是一个数;如果表示有理数的点在原点的右边,那么是一个数.5一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点

11、的边,与原点的距离是个单位长度。三、寻找规律1、观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?2、每个数到原点的距离是多少?由此你又有什么发现?3、进一步引导学生完成P9归纳【要点归纳】:画数轴需要三个条件是什么?【拓展练习】1、在数轴上,表示数-3,2.6,0,-1的点中,在原点左边的点有个。2、在数轴上点A表示-4,如果把原点O向正方向移动1个单位,那么在新数轴上点A表示的数是( ) 3、你觉得数轴上的点表示数的大小与点的位置有什么关系? 【总结反思】:课题:1.2.3 相反数【学习目标】:1、掌握相反数的意义;2、掌握求一个已知数的相反数;3、体验数形结合思想;

12、【学习重点】:求一个已知数的相反数;【学习难点】:根据相反数的意义化简符号。【导学指导】一、温故知新1、数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、2、5、+2 这四个数的点。3、观察上图并填空: 数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。 从上面问题可以看出,一般地,如果a是一个正数,那么数轴上与原点的距离是a的点有两个,即一个表示a,另一个是,它们分别在原点的左边和右边,我们说,这两点关于原点对称。二、自主学习自学课本第9、10的内容并填空: 1、相反数的概念像2和2、5和5、3和3这样,只有不同的两个数叫做互为

13、相反数。2、练习,和是互为相反数,的相反数是2010;(2)、a和互为相反数,也就是说,a是的相反数例如a=7时,a=7,即7的相反数是7.a=5时,a=(5),“(5)”读作“5的相反数”,而5的相反数是5,所以,(5)=5你发现了吗,在一个数的前面添上一个“”号,这个数就成了原数的(3)简化符号:(0.75)=,(68)=,(0.5 )=,(3.8)=;(4)、0的相反数是.3、数轴上表示相反数的两个点和原点的距离分别在数轴的。【课堂练习】 P10第1、2、3、4题【要点归纳】:1、本节课你有那些收获?2、还有没解决的问题吗?【拓展训练】1.在数轴上标出3,1.5,0各数与它们的相反数。2

14、是,2x的相反数是,a-b的相反数是;3. 相反数等于它本身的数是,相反数大于它本身的数是;4.填空:(1)如果a13,那么a;(2)如果-a5.4,那么a;(3)如果x6,那么x;(4)x9,那么x;相反数的两个数的点之间的距离为10,求这两个数。【学习目标】:1、理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值和有理数大小比较的方法;3、体验运用直观知识解决数学问题的成功;【重点难点】:绝对值的概念与两个负数的大小比较【导学指导】一、知识链接问题:如下图两汽车从同一处O出发,分别向东、西方向行走10千米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近

15、)二、自主探究1、由上问题可以知道,10到原点的距离是,10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。这时我们就说10的绝对值是10,10的绝对值也是10;例如,3.8的绝对值是3.8;17的绝对值是17;6的绝对值是一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。2、练习(1)、式子-5.7表示的意义是。(2)、2的绝对值表示它离开原点的距离是个单位,记作;(3)、24=. 3.1=,=,0=;3、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。用式子表示就是:1)、当a是正数(即a>0)时,a=;2)

16、、当a是负数(即a<0)时,a=;3)、当a=0时,a=;4、随堂练习 P11第1、2、3题(直接做在课本上)5、阅读P12的思考,发现新知阅读P12问题,你有什么发现吗?在数轴上表示的两个数,右边的数总要左边的数(填写大、小)。也就是:1)、正数0,负数0,正数大于负数。2)、两个负数,绝对值大的。【课堂练习】:1、自学例题 P13 (教师指导)2、比较下列各对数的大小:3和-5; 3和5; 2.5和2.25; 和【要点归纳】:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。【拓展练习】1如果,则的取值范围是 ( )AOBOCODO2,则; ,则3如果,则,4绝对值等于其相反

17、数的数一定是( )A负数 B正数 C负数或零 D正数或零5给出下列说法:互为相反数的两个数绝对值相等;绝对值等于本身的数只有正数;不相等的两个数绝对值不相等; 绝对值相等的两数一定相等其中正确的有( )A0个B1个C2个D3个【总结反思】:课题:1.3.1有理数的加法(1)【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学习重点】:有理数加法法则【学习难点】:异号两数相加【导学指导】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球

18、数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为 4(2),蓝队的净胜球数为 1(1)。这里用到正数和负数的加法。那么,怎样计算4(2)下面我们一起借助数轴来讨论有理数的加法。二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向右为正,向左为负,那么一个人向右走4米,再向右走2米,两次共向右走了米,这个问题用算式表示就是:2)如果规定向右为正,向左为负,那么一个人向左走5米,再向左走3米,两次共向左走多少米?很明显,两次共向左走了米。这个问题用算式表示就是:如图所示: 3)利用数轴,求以下情况时这个人两次运动的结果

19、:先向左走3米,再向右走5米,这个人相当于从起点向走了米;先向右走3米,再向左走5米,这个人相当于从起点向走了米;先向右走5米,再向左走5米,这个人相当于从起点向走了米;出这三种情况运动结果的算式4)如果这个人第一秒向右(或向左)走5米,第二秒原地不动,两秒后这个人从起点向右(或向左)运动了米。写成算式就是2、师生归纳两个有理数相加的几种情况(以上有6个算式)。3你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加。(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得;(3)一个数同0相加,

20、仍得。 例1 计算(自己动动手吧!) (1) (3)(9); (2) (4.7)3.9.【课堂练习】:1 用算式表达下列的结果:(1) 温度由-40C上70C;(2) 收入7元,又支出5元。2填空:(口答) (1)(4)+(6)= ; (2)3(8)= ;(4)7(7)= ; (4)(9)1 = ;(5)(6)+0 = ; (6)0+(3) = ; 2. 课本P18第2、3、4题【要点归纳】:有理数加法法则:【拓展训练】:1判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,

21、这两个有理数一定都是正数。2已知a= 8,b= 3; (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。课题:1.3.1有理数的加法(2)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算 30 +(20)= (20)+30= 8 +(5) +(4)= 8 + (5)+(4)=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道

22、,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和.式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例2 计算: 1)16 +(25)+ 24 +(35)2)(2.48)+(+4.33)+(7.52)+(4.33)例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:91 9110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下。【课堂练习】课本P20页练习 1、2 【要点归纳】:你会用加法交换律、结合律简化运算了吗?【

23、拓展训练】1计算:(1)(7)+ 11 + 3 +(2); (2)2绝对值不大于10的整数有个,它们的和是.3、填空:(1)若a0,b0,那么ab 0(2)若a0,b0,那么ab 0(3)若a0,b0,且ab那么ab 0(4)若a0,b0,且ab那么ab 04某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?5、课本P20实验与探究【总结反思】: 课题:1.3.2有理数的减法(1)【学习目标】:1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2、会正确进行有理数减法运算;3

24、、体验把减法转化为加法的转化思想;【重点难点】:有理数减法法则和运算【导学指导】一、知识链接1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 154米,两处的高度相差多少呢?试试看,计算的算式应该是.能算出来吗,画草图试试2、长春某天的气温是3°C3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3(3);想想看,温差到底是多少呢?那么,3(3)=;二、自主探究1、还记得吗,被减数、减数、差之间的关系是:被减数减数=;差+减数=。2、请你与同桌伙伴一起探究、交流:要计算3(3)=?,实际上也就是要

25、求:?+(3)=3,所以这个数(差)应该是;也就是3(3)=6;再看看,3+3=;所以3(3)3+3;由上你有什么发现?请写出来.3、换两个式子计算一下,看看上面的结论还成立吗?1(3)=, 1+3=,所以1(3)1+3;0(3)=, 0+3=,所以0(3)0+3;4、归纳1)法则:2)字母表示:三、新知应用1、 例题例4.计算:(1) (3)(5); (2)07;(3) 7.2(4.8); (4)(3;请同学们先尝试解决【课堂练习】课本 P23 T【要点归纳】:有理数减法法则:【拓展训练】1、计算:(1)(37)(47); (2)(53)16;(3)(210)87; (4)1.3(2.7);

26、(5)(2)(1);2分别求出数轴上下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数2的点与表示数3的点;【总结反思】:课题:1.3.2 有理数的减法(2)【学习目标】:1、理解加减法统一成加法运算的意义;2、会将有理数的加减混合运算转化为有理数的加法运算;【重点难点】:有理数加减法统一成加法运算;【导学指导】一、知识链接1、一架飞机作特技表演,起飞后的高度变化如下表:高度的变化记作请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米。2、你是怎么算出来的,方法是二、自主探究1、现在我们来研究(20)+(+3)(5)(+7),该怎么计算呢?还是先自己独立动动手吧!2、怎

27、么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为.再把加号记在脑子里,省略不写如:(20)(3)(5)(7) 有加法也有减法=(20)(3)(5)(7) 先把减法转化为加法= 20357 再把加号记在脑子里,省略不写可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.4、完整写出解题过程5、探究:在用数轴上,点A、B分别表示数a、b.利用有理数减法,分别计算下列情况下点A、B之间的距离:a=2,b=6 ; a=6,b=2; a=2,b=-6; a=-2,b=6.你发现点A、B之间的距离与数a

28、、b之间的关系吗?【课堂练习】计算:(课本P24练习)(1)14+30.5;(2)-2.4+3.54.6+3.5 ;(3)(7)(+5)+(4)(10);(4);【要点归纳】:【拓展训练】:计算:1)2718+(7)32 2)【总结反思】:课题:1.4.1有理数的乘法(1)【学习目标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【重点难点】:有理数乘法法则【导学指导】一、温故知新1.有理数加法法则内容是什么?(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗?二

29、、自主探究1、自学课本28-29页回答下列问题 (1) 2×3 = ; (2)(2)×3 =;(3)(2)×(3)=; (4)(2)×(3)=;(5)0×(3)=; (6)(-1000)×0=.观察上面的式子, 你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号,异号,并把相乘。 任何数与0相乘,都得。2、直接说出下列两数相乘所得的积1)(-5)×(3) ; 2)(7)×4 ; 3)(7)×(9); 4)0.9×(-8) ; 3、请同学们自己完成例1 计算:(1)(3)

30、15;9; (2)8×(-1)(3)()×(-2).归纳: 的两个数互为倒数。【课堂练习】课本30页练习1.2.3(直接做在课本上)【要点归纳】:有理数乘法法则:【拓展训练】1.如果ab0,a+b0,确定a、b的正负。2.对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)*3+1课题:1.4.1有理数的乘法(2)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数

31、乘法法则:二、自主探究 1、 观察:下列各式的积是正的还是负的?2×3×4×(5),2×3×(-4)×(5),2×(-3)× (-4)×(5),(2) ×(3) ×(4) ×(5); 思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。2、新知应用1、例3 计算:(1) (2) 请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列

32、式子的结果吗?如果能,理由7.8×(8.1)×O× (19.6)小结:【课堂练习】1口算:(课本P32练习T1)2计算:(1).(5)×8×(7)×(0.25);(2).;(3);【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )2.下列运算结果为负值的是( )A.(-7)×(-6) B.(-6)+(-4)C.0×(-2)(-3) D.(-7)-(-15)3.下列运

33、算错误的是( )A.(-2)×(-3)=6 B. C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24二、计算: 1.;2.;1.4.1课题:有理数的乘法(3)【学习目标】:1、熟练有理数的乘法运算并能用乘法运算律简化运算;2、学生通过观察、思考、探究、讨论,主动地进行学习;【学习重点】:正确运用运算律,使运算简化【学习难点】:运用运算律,使运算简化【导学指导】一、知识链接1、请同学们计算并比较它们的结果:(1) (6)×5= 5×(6)=(2) 3×(4)×(5)= 3&#

34、215;(4)×(5)=请以小组为单位,相互检查,看计算对了吗?二、自主探究1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3、归纳、总结乘法交换律:两个数相乘,交换因数的位置,积。 即:ab=乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 即:(ab)c=4、新知应用如何计算:5×3+(-7)归纳:a(b+c)=例题4用两种方法计算 ()×12 ;解法一: 解法二:【课堂练习】:(课本P33练习)1.(85)×(25)×(4)

35、; 2.()×15×(1);3.()×30; 4.【要点归纳】:【拓展训练】:1、看谁算得快,算得准(1)(7)×()× ; (2) 9 ×18;(3)9×(11)+12×(9); (4);【总结反思】:课题:1.4.2有理数的除法(1)【学习目标】:1、理解除法是乘法的逆运算;2、理解倒数概念,会求有理数的倒数;3、掌握除法法则,会进行有理数的除法运算;【重点难点】:有理数的除法法则和性质符号的确定.【导学指导】一、知识链接1)、 理由是2)你计算? 说明了什么?(用等式表示)从上面这个例子你可以发现,有理数除法

36、与乘法之间的关系是 有理数的除法法则是:用字母表示成立3)写出下列各数的倒数-4 的倒数 ,3的倒数 ,-2的倒数;4)两有理数相除,同号得,异号得,并把相除.0除以任何一个不等于0的数,都得0.二、合作交流、探究新知1、小组合作完成比较大小:8÷(4) 8×(一); (15)÷3 (15)×; (一1)÷(一2)(1)×(一);再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于; 2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得;1自学P34例52

37、 完成P35练习题3.化简下列分数: (2)4.计算:(3) (4)【要点归纳】:有理数的除法法则:【拓展训练】1、计算(1) ; (2)0÷(-1000);(3)375÷;【总结反思】:作业P36练习1-2课题:1.4.2有理数的除法(2)【学习目标】:1、学会准确快速进行分数的除法运算;2、掌握含有分数的有理数的乘除混合运算;【学习重点】:有理数的乘除混合运算符号确定和除法化成乘法;【学习难点】:运算顺序的确定与性质符号的处理;【导学指导】一、知识链接 1、计算 (1) (-8)÷(-4);(2) (-9)÷3 ; (3) (0.1)÷&#

38、215;(100);2. 有理数的除法法则:二、自主探究1.例8 计算(1)(8)+4÷(-2) (2)(-7)×(-5)90÷(-15)你的计算方法是先算法,再算法。有理数加减乘除的混合运算顺序应该是写出解答过程 2.自学完成例9(阅读课本P36P37页内容)【课堂练习】1、计算(P36练习)(1)6(12)÷(3); ( 2)3×(4)+(28)÷7;(3)(48)÷8(25)×(6); ( 4);【要点归纳】:【拓展训练】1、选择题(1)下列运算有错误的是( )A.÷(-3)=3×(-3)

39、 B. C.8-(-2)=8+2 D.2-7=(+2)+(-7)(2)下列运算正确的是( ) A. ; B.0-2=-2; C.; D.(-2)÷(-4)=2;2、计算1)、186÷(2)× ; 2)11+(22)3×(11);【总结反思】:课题:1.5.1有理数的乘方(1)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点】:有理数乘方的运算。【导学指导】一、知识链接拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面

40、条.想想看,师傅如果捏合6次后,就拉出根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子中 ,叫做,叫做2)式子表示的意义是3)从运算上看式子,可以读作,从结果上看式子,可以读作; 2、新知应用1、将下列各式写成乘方(即幂)的形式:(1).(-2)×(-2)×(-2)×(-2).(怎么读)(2).()×()×()×();(怎么读)(3).(2010个)(怎么读)2、例题,P41例1自学完成从例题1 可以归纳得出:负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂

41、都是;3、思考:(2)4和24意义一样吗?为什么? 4、自学例2 (交流)【课堂练习】完成P42页1,2.【要点归纳】:【拓展训练】1、我们已经学习了五种运算,请把下表补充完整:运算加减乘除乘方运算结果和2、用乘方的意义计算下列各式:(1);(2) ; (3);3.计算 (1) ;(2) ;【总结反思】:课题:1.5.1有理数的乘方(2)【学习目标】:1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力;【学习重点】:运算顺序的确定和性质符号的处理;【学习难点】:有理数的混合运算;【导学指导】一、知识链接1、在2+×(6)这

42、个式子中,存在着种运算。2、请你们小组讨论、交流,上面这个式子应该先算、再算、最后算。二、合作探究1、由上可以知道,在有理数的混合运算中,运算顺序是:(1)_;(2)_;(3)_;2、P43例题3,请你试练(1); (2)3.师生共同探讨P43例题4【课堂练习】P44练习计算: (1)、(1)10×2+(2)3÷4;(2)、(5)33×; (3)、;(4)、(10)4+(4)2(3+32)×2;【要点归纳】:有理数的混合运算的运算顺序是:【拓展训练】计算1、2、【总结反思】:【学习目标】:1能将一个有理数用科学记数法表示;2. 已知用科学记数法表示的数,

43、写出原来的数;3懂得用科学记数法表示数的好处;【重点难点】:用科学记数法表示较大的数【导学指导】一、知识链接1、根据乘方的意义,填写下表:10的乘方表示的意义运算结果结果中的0的个数10210×101002 103    104    105   二、自主学习1.我们知道:光的速度约为:300000000米/秒,地球表面积约为平方米。这些数非常大,写起来表较麻烦,能否用一个比较简单的方法来表示这两个数吗?300 000 000=5100 000 000 000=定义:把一个大于10的数表示成a&

44、#215;10n的形式(其中a_n是_)叫做科学记数法。2.例5用科学记数法表示下列各数:(1)1 000 000=(2)57 000 000=(3)-123 000 000 000=(4)800800=归纳:用科学记数法表示一个n位整数时,10的指数比原来的整数位_【课堂练习】1.课本45页练习1 、2题2写出下列用科学记数法表示的原数:(1)8848×103= (2)3.021×102= (3)3×106= (4)7.5×105= 【要点归纳】:【拓展训练】1用科学记数法表示下列各数:(1)465000= (2)1200万= (3)1000.001=

45、 (4)-789= (5)308×106= (6)0.7805×1010= 【总结反思】: 【学习目标】:1了解近似数和有效数字的概念,能按要求取近似数和保留有效数字;2体会近似数的意义及在生活中的应用;【学习重点】:能按要求取近似数和有效数字;【学习难点】:有效数字概念的理解。【导学指导】一、知识链接1用科学记数法表示下列各数:(1)1250000000=;(2)-130000=;(3)-1025000= ;2下列用科学记数法表示的数,把原数写在横线上:(1);(2);二自主学习1(1)我们班有名学生,名男生,名女生;(2)一天有小时,一小时有分,一分钟有秒;(3)我的体

46、重约为千克,我的身高约为厘米;(4)我国大约有亿人口 在上题中,第题中的数字是准确的,第题中的数字是与实际接近的。这种只是接近实际数字,但与实际数字还有差别的数被称为近似数。2你还能举出生活中的准确数与近似数吗?请将你举的例子写在下面的空白处。3近似数与准确数的接近程度,可以用精确度表示(也就是按四舍五入保留小数)。按四舍五入对圆周率取近似数时,有:(精确到个位),(精确到 0.1 ,或叫精确到十分位),(精确到,或叫精确到位),(精确到,或叫精确到位),(精确到,或叫精确到位)。4.例6按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001); (2)304.3

47、5(精确到个位);(3)1.804(精确到0.1); (4)1.804(精确到0.01);解:(1) (2)(3) (4)思考:1.8,与1.80的精确度相同吗?在表示近似数时,能将小数点后的0随便去掉吗?从一个数的左边_, 到_止,所有的数字都是这个数的有效数字。【课堂练习】P46练习用四舍五入法对它们取近似数,并写出各近似数数的有效数字(1)0.00356(精确到万分位); (2)61.235(精确到个位);(3)1.8935(精确到0.001); (4)0.0571(精确到0.1);【要点归纳】:【拓展训练】1.按括号内要求,用四舍五入法对下列各数取近似数:(1)0.00356(精确到0

48、.0001); (2)566.1235(精确到个位);(3)3.8963(精确到0.1); (4)0.0571(精确到千分位);(5)0.2904(保留两个有效数字); (6)0.2904(保留3个有效数字);位,有个有效数字,分别是;位,有个有效数字,分别是;(3)5.7×105精确到位,有个有效数字,分别是_;【总结反思】:课题:第一章 有理数复习(两课时)【复习目标】:复习整理有理数有关概念和有理数的运算法则,运算律以及近似计算等有关知识;【复习重点】:有理数概念和有理数的运算;【复习难点】:对有理数的运算法则的理解;【导学指导】:一、知识回顾(一)正负数 有理数的分类:_统称整数,试举例说明。 _统称分数,试举例说明。_统称有理数。(二)数轴 规定了、的直线,叫数轴(三)、相反数的概念像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数;0的相反数是。一般地:若a为任一有理数,则a的相反数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论