电力电子技术课程设计_第1页
电力电子技术课程设计_第2页
电力电子技术课程设计_第3页
电力电子技术课程设计_第4页
电力电子技术课程设计_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电气与动力工程学院电气0806 王士杰目录第一章绪论··············12第二章电力电子器件··············28 2.1 电力电子器件概述·············&#

2、183; 232.2 电力二极管·············· 3 2.3 晶闸管·············· 45 2.4 绝缘栅双极晶体管·············· 56 第三

3、章整流电路·············· 611第四章PWM控制技术············ 1112第五章Matlab简介············1314第六章直流和交流电机的调速···&#

4、183;····· 1416第七章Matlab软件仿真结果·········· 1622第八章分析与总结·············· 2226第一章绪论电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”

5、功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。电力电子技术分为电力电子器件制造技术和交流技术两个分支。现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。电力电子学这一名称是在上世纪60年代出现的。1974年,美国的用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。一般认为,电力电子技术的诞生是以1957年美国的通用汽车公司研制出

6、的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大

7、于一身,性能优越使之成为现代电力电子技术的主导器件。为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助器件做成模块的形式,后来又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前PIC的功率都还较小但这代表了电力电子技术发展的一个重要方向利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。

8、应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了

9、电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。第二章电力电子器件电力电子器件的概述20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普

10、通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控

11、制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%40%)。单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联

12、时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。2.2 电力二极管电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管是一样的,都以半导体PN结为基础

13、,实现正向导通、反向截止的功能;电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的,从外形上看,主要有螺栓型和平板型两种封装。其主要类型有普通二极管、快恢复二极管、肖特基二极管。电力二极管的主要参数:(1)额定正向平均电流或额定电流。指在规定壳温和散热条件下,二极管额定发热所允许通过的最大正弦半波电流的平均值。在此电流下,二极管由于电压引起的损耗造成结温升高不会超过最高允许结温。由此可见,正向平均电流也就是电流的有效值。因此,应用中应按有效值相等条件选取二极管额定电流。(2)反向重复峰值电压。反向重复

14、峰值电压又称为二极管的额定电压。注意该峰值是瞬时值的峰值。通常取为反向击穿电压的2/3。使用时应按照两倍的安全裕量选取比参数。(3)最高允许结温。结温是整个PN结的平均温度,最高结温是指PN结不致损坏的前提下所能承受的最高平均温度。通常在125-175度之间。(4)反向恢复时间。是指二极管正向电流过零到反向电流下降到峰值10%时的时间间隔,该值越小越好。2.3 晶闸管晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和门

15、极; 晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。晶闸管的工作条件:1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关断状态。2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。4. 晶闸管

16、在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路、逆变、电机调速、电机励磁、无触点开关及自动控制等方面。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。只有在触发脉冲Ug到来时,负载RL上才有电压UL输出。Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均

17、值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角;在每个正半周内晶闸管导通的电角度叫导通角。很明显,和都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角或导通角,改变负载上脉冲直流电压的平均值UL,实现了可控整流。2.4 绝缘栅双极晶体管(IGBT)绝缘栅双极晶体管(Insulate-Gate Bipolar TransistorIGBT)综合了电力晶体管(Giant TransistorGTR)和电力场效应晶体管(Power MOSFET

18、)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。IGBT(InsulatedGateBipolarTransistor)是MOS结构双极器件,属于具有功率MOSFET的高速性能与双极的低电阻性能的功率器件。IGBT的应用范围一般都在耐压600V以上、电流10A以上、频率为1kHz以上的区域。多使用在工业用电机、民用小容量电机、变换器(逆变器)、照像机的频闪观测器、感应加热(InductionHeating)电饭锅等领域。根据封装的不同,IGBT大致分为两种类型,一种是模压树脂密封的三端单体封装型,从TO3P到小型表面贴装都已形成系列。另一种是把IGBT与F

19、WD (FleeWheelDiode)成对地(2或6组)封装起来的模块型,主要应用在工业上。模块的类型根据用途的不同,分为多种形状及封装方式,都已形成系列化。IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。MOSFET由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 高出很多。IGBT较低的压降,转换成一个低VCE(sat

20、)的能力,以及IGBT的结构,与同一个标准双极器件相比,可支持更高电流密度,并简化 IGBT驱动器的原理图。IGBT 的静态特性主要有伏安特性、转移特性和开关特性。IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应

21、用范围。IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示:Uds(on) Uj1

22、Udr IdRoh 式中Uj1 JI 结的正向电压,其值为0.7 1V ;Udr 扩展电阻Rdr 上的压降;Roh 沟道电阻。通态电流Ids 可用下式表示:Ids=(1+Bpnp)Imos 式中Imos 流过MOSFET 的电流。由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。第三章整流和逆变电路整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电

23、压的混合电压,习惯上称单向脉动性直流电压。按组成的器件:可分为不可控电路、半控电路、全控电路三种1)不可控整流电路完全由不可控二极管组成,电路结构一定之后其直流整流电压和交流电源电压值的比是固定不变的。2)半控整流电路由可控元件和二极管混合组成,在这种电路中,负载电源极性不能改变,但平均值可以调节。3)在全控整流电路中,所有的整流元件都是可控的(SCR、GTR、GTO 等),其输出直流电压的平均值及极性可以通过控制元件的导通状况而得到调节,在这种电路中,功率既可以由电源向负载传送,也可以由负载反馈给电源,即所谓的有源逆变。一半波整流电路半波整流电路是一种最简单的整流电路。它由电源变压器B 、整

24、流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在2时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在2时间内,重复0时间的过程,而在34时间内,又重复2时间的过程这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获

25、得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用.二全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。全波整流电路,可以看作是由两个半波整流电路组合成的。变

26、压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。三桥式整流电路桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成“桥”式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压

27、,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2Rfz 、D4通电回路,同样在Rfz 上形成上正下负的另外半波的整流电压。如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。三相桥式全控整流电路目前在各种整流电路中,应用最广泛的是三相桥式整流电路,其原理如图。习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、 VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT

28、1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6.主电路原理说明整流电路的负载为阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。=0o时,各晶闸管均

29、在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小

30、(负得最多)的相电压,输出整流电压 ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。由于负载端接得有电感且电感的阻值趋于无穷大,电感对电流变化有抗拒作用。流过电感器件的电流变化时,在其两端产生感应电动势Li,它的极性事阻止电流变化的。当电流增加时,它的极性阻止电流增加,当电流减小时,它的极性反过来阻止电流减小。电感的这种作用使得电流波形变得平直,电感无穷大时趋于一条平直的直线。三相电压型逆变电路在生产实践中,存在着与整流过程相反的要求,及要求把直流电转换成交流电,这种对应于蒸馏的你想过程,定义为逆变。逆变和整流的区别仅仅是控制角的不同。0时,电路

31、工作在整流状态;时,电路工作在逆变状态。三相桥式逆变电路如图1所示,图中应用IGBT作为逆变开关,也可用其它全控型器件构成逆变器。从电路结构上看,如果把三相负载看成三相整流变压器的三个绕组,那么三相桥式逆变电路犹如三相桥式可控整流电路与三相二极管整流电路的反并联,其中可控电路用来实现直流到交流的逆变,不可控电路为感性负载电流提供续流回路,完成无功能量的续流和反馈,因此D1D6称为续流二极管或反馈二极管。在三相桥式逆变电路中,各管的导通次序同整流电路一样,也是T1、T2、T3T6、T1各管的触发信号依次互差60°。三相电压型逆变电路的基本工作方式也是180o导电方式,即每个桥臂的导电角

32、度为180o,同一相上下两个桥臂交替导电,各项开始导电的角度相差120o.这样在任意瞬间将有三个臂同时导通。可能是上面一个臂下面两个臂,也可能是上面一个臂下面两个臂同时导通。因此每一次换流都是在同一相见进行因此也被称为纵向换流。第四章 PWM控制技术PWM(Pulse Width Modulation)控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值);面积等效原理是PWM技术的重要基础理论;一种典型的PWM控制波形SPWM:脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形称为SPWM波。基本原理:随着电子技术的发展,出现了多种

33、PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区

34、别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在0V, 5V这一集合中取值。模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗

35、相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即

36、是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:1、设置提供调制方波的片上定时器/计数器的周期2、在PWM控制寄存器中设置接通时间3、设置PWM输出的方向,这个输出是一个通用I/O

37、管脚4、启动定时器5、使能PWM控制器PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。采样控制理论中有一个重要结论:冲量

38、相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率. PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非

39、线性系统控制思想的应用,PWM控制技术获得了空前的发展.第五章 Matlab仿真软件简介MATLAB 是一种科学计算软件。MATLAB 是MatrixLaboratory (矩阵实验室)的缩写,这是一种以矩阵为基础的交互式程序计算语言。早期的MATLAB 主要用于解决科学和工程的复杂数学计算问题。由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常用软件。MATLAB 由美国Mathworks 公司于1984 年开始推出,历经升级,到2001年已经有了60版,现在、

40、7.0 版都已相继面世。早期的MATLAB 在DOS 环境下运行,1990年推出了Windows版本。1993年,该公司又推出了MATLAB的微机版,充分支持在MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为传播,是各种科学计算软件中使用频率最高的软件。1993年出现了SIMULINK,这是基于框图的仿真平台,SIMULINK 挂接在MATLAB 环境上,以MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。SIMULINK 提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大便利。在SIMULINK 平台上,拖

41、拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。在SIMULINK 平台上,仿真模型的可读性很强,这就避免了在MATLAB 窗口使用MATLAB 命令和函数仿真时,需要熟悉记忆大量M 函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。现在的MATLAB 都同时捆绑了SIMULINK,SIMULINK的版本也在不断地升级,从1993年的MATLAB 40SIMULINK 10 版到2001 年的MATLAB 61SIMULINK 41 版,2002 年即推出了MATLAB 65 SIMULINK 50 版。MATLAB 已经不再是单纯的"矩阵实验室"了,

42、它已经成为一个高级计算和仿真平台。本次课程设计中所使用的版本为。SIMULINK 原本是为控制系统的仿真而建立的工具箱,从SIMULINK41 版开始,有了电力系统模块库(Power System Blockset),该模块库主要由加拿大HydroQuebec、TECSIMInternational公司共同开发。在SIMULINK 环境下用电力系统模块库的模块,可以方便地进行RLC 电路、电力电子电路、电机控制系统和电力系统的仿真。本次训练中电力电子电路的仿真就是在MATLABSIMULINK环境下,主要使用电力系统模块库和SIMULINK两个模块库进行。通过电力电子电路的仿真,不仅展示了MA

43、TLABSIMULINK 的强大功能,并且可以学习控制系统仿真的方法和技巧,研究电路的原理和性能。第六章直流和交流电机的调速直流调速直流电动机是一种将直流电能转换成机械能的装置,由于其带有机械换向器,较比交流电动机结构复杂,生产运行成本较高,并有逐步被交流电动机所取缔。但是由于直流电动机具有启动转巨大,调速范围宽等优点,在轧钢机电力机车的等方面有一定的应用。同时由于直流电动机原理简单,理论基础厚重,对电机学习者具有很强的吸引力。直流电机的转速计算公式如下:n=(U-IR)/K,其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,为每极磁通量,K为电动机结构参数。可以看出,转速和U、I有关,并

44、且可控量只有这两个,我们可以通过调节这两个量来改变转速。我们知道,I可以通过改变电压进行改变,而我们常提到的PWM控制也就是用来调节电压波形的常用方法,这里我们也就是用PWM控制来进行电机转速调节的。通过单片机输出一定频率的方波,方波的占空比大小绝对平均电压的大小,也决定了电机的转速大小可以看出,直流电动机调节转速有以下三种方法:(1)调节电枢电流调速;(2)改变电动机励磁调速;(3) 改变电枢回路电阻调速;本次课设即用第一种调速方式,通过改变电枢电压,改变电枢电流来进行调速。交流调速目前较常用的交流电动机有两种:1、三相异步电动机。2、单相交流电动机。第一种多用在工业上,而第二种多用在民用电

45、器上。一、三相异步电动机的旋转原理三相异步电动机要旋转起来的先决条件是具有一个旋转磁场,三相异步电动机的定子绕组就是用来产生旋转磁场的。我们知道,但相电源相与相之间的电压在相位上是相差120度的,三相异步电动机定子中的三个绕组在空间方位上也互差120度,这样,当在定子绕组中通入三相电源时,定子绕组就会产生一个旋转磁场,其产生的过程如图1所示。图中分四个时刻来描述旋转磁场的产生过程。电流每变化一个周期,旋转磁场在空间旋转一周,即旋转磁场的旋转速度与电流的变化是同步的。旋转磁场的转速为:n=60f/P 式中f为电源频率、P是磁场的磁极对数、n的单位是:每分钟转数。根据此式我们知道,电动机的转速与磁

46、极数和使用电源的频率有关,为此,控制交流电动机的转速有两种方法:1、改变磁极法;2、变频法。以往多用第一种方法,现在则利用变频技术实现对交流电动机的无级变速控制。旋转磁场的旋转方向与绕组中电流的相序有关。相序A、B、C顺时针排列,磁场顺时针方向旋转,若把三根电源线中的任意两根对调,例如将B相电流通入C相绕组中,C相电流通入B相绕组中,则相序变为:C、B、A,则磁场必然逆时针方向旋转。利用这一特性我们可很方便地改变三相电动机的旋转方向。定子绕组产生旋转磁场后,转子导条(鼠笼条)将切割旋转磁场的磁力线而产生感应电流,转子导条中的电流又与旋转磁场相互作用产生电磁力,电磁力产生的电磁转矩驱动转子沿旋转

47、磁场方向以n1的转速旋转起来。一般情况下,电动机的实际转速n1低于旋转磁场的转速n。因为假设n=n1,则转子导条与旋转磁场就没有相对运动,就不会切割磁力线,也就不会产生电磁转矩,所以转子的转速n1必然小于n。为此我们称三相电动机为异步电动机。二、单相交流电动机的旋转原理单相交流电动机只有一个绕组,转子是鼠笼式的。当单相正弦电流通过定子绕组时,电动机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反

48、的转矩,使得合成转矩为零,所以电动机无法旋转。当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。要使单相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场。在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论