




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、wordCENTRAL SOUTH UNIVERSITY题 目利用Matlab模拟点电荷电场的分布姓 名xxxx学 号xxxxxxxxxx班 级电气xxxx班任课老师xxxx实验日期2022-10电磁场理论 实验一利用Matlab模拟点电荷电场的分布1 实验目的:1 熟悉单个点电荷及一对点电荷的电场分布情况;2 学会使用Matlab进行数值计算,并绘出相应的图形;2 实验原理:根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F满足: (式1)由电场强度E的定义可
2、知: (式2)对于点电荷,根据场论根底中的定义,有势场E的势函数为 (式3)而 (式4) 在Matlab中,由以上公式算出各点的电势U,电场强度E后,可以用Matlab自带的库函数绘出相应电荷的电场分布情况。 3 实验内容:1. 单个点电荷l 点电荷的平面电力线和等势线真空中点电荷的场强大小是E=kq /r2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离。电场呈球对称分布, 取电量q 0, 电力线是以电荷为起点的射线簇。以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面。u 平面电力线
3、的画法在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。取射线的半径为( 都取国际制单位) r0=0.12, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。射线簇的终点的直角坐标为: x,y=pol2cart(th,r0)。插入x 的起始坐标x=x; 0.1*x.同样插入y 的起始坐标, y=y; 0.1*y, x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标。用二维画线命令plot(x,y)就画出所有电力线。u 平面等势线的画法在过电荷的截面上, 等势线就是以电荷为中心的圆簇, 用MATLAB 画等势线更加简单。静电力常量
4、为k=9e9, 电量可取为q=1e- 9; 最大的等势线的半径应该比射线的半径小一点 r0=0.1。其电势为u0=k8q /r0。如果从外到里取7 条等势线, 最里面的等势线的电势是最外面的3 倍, 那么各条线的电势用向量表示为: u=linspace(1,3,7)*u0。从- r0 到r0 取偶数个点, 例如100 个点, 使最中心点的坐标绕过0, 各点的坐标可用向量表示: x=linspace(- r0,r0,100), 在直角坐标系中可形成网格坐标: X,Y=meshgrid(x)。各点到原点的距离为: r=sqrt(X.2+Y.2), 在乘方时, 乘方号前面要加点, 表示对变量中的元素
5、进行乘方计算。各点的电势为U=k8q. /r, 在进行除法运算时, 除号前面也要加点, 同样表示对变量中的元素进行除法运算。用等高线命令即可画出等势线contour(X,Y,U,u), 在画等势线后一般会把电力线擦除, 在画等势线之前插入如下命令hold on 就行了。平面电力线和等势线如图1, 其中插入了标题等等。越靠近点电荷的中心, 电势越高, 电场强度越大, 电力线和等势线也越密。图1源程序:%点电荷的平面电力线和等势线%平面电力线的画法q=1e-9;r0=0.12;th=linspace(0,2*pi,13);x,y=pol2cart(th,r0);x=x;0.1*x;y=y;0.1*
6、y;plot(x,y);grid onhold onplot(0,0,o,MarkerSize,12)xlabel(x,fontsize,16)ylabel(y,fontsize,16)title(单个点电荷的电场线与等势线,fontsize,20)%平面等势线的画法k=9e9;r0=0.1;u0=k*q/r0;u=linspace(1,3,7)*u0;x=linspace(-r0,r0,100);X,Y=meshgrid(x);r=sqrt(X.2+Y.2);U=k*q./r;hold on;contour(X,Y,U,u)clear;l 点电荷的立体电力线和等势面u 立体电力线的画法先形成
7、三维单位球面坐标, 绕z 轴一周有8 条电力线X,Y,Z=sphere(8),每维都是99 的网格矩阵, 将X 化为行向量, 就形成各条电力线的终点x 坐标x=r0=X(:), 其他两个坐标也可同样形成终点坐标y=r0+Y(:) , z=r0+Z(:) 。对x坐标插入原点x=x(zeros(size(x), 其他两个坐标如下形成y=y(zeros(size(y), z=z(zeros(size(z), 用三维画线命令plot3(x,y,z), 就画出所有电力线。u 立体等势面的画法画5 条等势面时, 各面的电势为u=linspace(1,3,5)+u0, 各等势面的半径为r=k6q. /u,
8、其中第一个球面的半径为rr=r(1)。三维单位球面的坐标可由X,Y,Z=sphere 命令形成, 每维都是2121 的网格矩阵, 由于外球会包围内球, 因此把球面的四分之一设为非数, 表示割去该局部Z(X0&Y0)=nan. 用曲面命令可画出第一个曲面surf(rr6X,rr6Y,rr6Z), 只要取不同的半径就能画出不同的等势面.为了使等势面好看, 可设置一个颜色浓淡连续变化的命令shading interp。点电荷的立体电力线和等势面如图2, 旋转图片可从不同的角度观察。图2源程序:%立体电力线的画法q=1e-9;X,Y,Z=sphere(8);r0=0.18;r1=0.2;k=9e9;u
9、0=k*q/r0;x=r1*X(:);y=r1*Y(:);z=r1*Z(:);x=x;zeros(size(x);y=y;zeros(size(y);z=z;zeros(size(z);plot3(x,y,z)hold on;%立体等势线之画法u=linspace(1,3,5)*u0; %画5 条等势面时, 各面的电势为u=linspace(1,3,5)+u0,r=k*q./u; %各等势面的半径为r=k6q. /uX,Y,Z=sphere;Z(X0&Y0)=nan;surf(r(1)*X,r(1)*Y,r(1)*Z); %第一到第五个球面surf(r(2)*X,r(2)*Y,r(2)*Z);
10、surf(r(3)*X,r(3)*Y,r(3)*Z);surf(r(4)*X,r(4)*Y,r(4)*Z);surf(r(5)*X,r(5)*Y,r(5)*Z);shading interp %个颜色浓淡连续变化的命令shading interp。xlabel(x,fontsize,16);ylabel(y,fontsize,16);zlabel(z,fontsize,16);title(正电荷电场线等势面的三维图形,fontsize,20);clear;2. 一对点电荷u 平面等势线的画法仍然用MATLAB 的等高线命令画等势线。对于正负两个点电荷, 电量不妨分别取q1=2e- 9,q2=-
11、 1e- 9, 正电荷在x 轴正方, 负电荷在x 轴负方, 它们到原点的距离定为a=0.02; 假设平面范围为xx0=0.05,yy0=0.04, 两个坐标向量分别x=linspace(- xx0,xx0,20)和y=linspace(- yy0,yy0,50)。设置平面网格坐标为X,Y=meshgrid(x), 各点到两电荷的距离分别为r1=sqrt(X- a).2+Y.2)和r2=sqrt(X+a).2+Y.2)。各点的电势为U=k6q1. /r1+k6q2. /r2, 取最高电势为u0=50, 最低电势取其负值。在两者之间取11 个电势向量u=linspace (u0,- u0,11),
12、 等高线命令contour(X,Y,U,u,k- )用黑实线, 画出等势线如图2所示, 其中, 左边从里到外的第6 条包围负电荷的等势线为零势线。u 平面电力线的画法利用MATLAB 的箭头命令, 可用各点的电场强度方向代替电力线。根据梯度可求各点的场强的两个分量Ex,Ey=gradient(- U),合场强为E=sqrt(Ex.2+Ey.2)。为了使箭头等长, 将场强Ex=Ex. /E,Ey=Ey. /E 归一化, 用箭头命令quiver(X,Y,Ex,Ey)可标出各网点的电场强度的方向,异号点电荷对的场点方向如图3 所示。为了画出连续的电力线, 先确定电力线的起点。电荷的半径可取为r0=0
13、.002, 如图4 所示, 假设第一条电力线的起始角为30 度, 其弧度为q=30+pi /180, 起始点到第一个点电荷的坐标为x1=r0+cos(q),y=r0+sin(q), 到第二个点电荷的坐标只有横坐标x2=2+a+x1 不同。用前面的方法可求出该点到两个电荷之间的距离r1 和r2, 从而计算场强的两个分量以及总场强Ex=q1+x1 /r13 +q2+x2 /r23, Ey=q1+y/r13+q2+y/r23, E=sqrt(Ex6Ex+Ey6Ey)。下面只要用到场强分量与总场强的比值, 在计算场强分量时没有乘以静电力常量k。由于电力线的方向与场强的切线方向相同, 取线段为s=0.0
14、001,由此可求出终点的坐标为x1=x1+s#Ex/E,y=y+s+Ey/E, 从而计算x2。以终点为新的起点就能计算其他终点。当终点出界时或者到达另一点电荷时, 这个终点可作为最后终点. 这种计算电力线的方法称为切线法。源程序:%一对电荷平面等势线和电场线图clear all;clf;%平面等势线的画法q1=2e-9;q2=-1e-9;a=0.02;%到原点的距离xx0=0.05;yy0=0.04;k=9e9;x=linspace(-xx0,xx0,20);y=linspace(-yy0,yy0,50);X,Y=meshgrid(x);r11=sqrt(xx0/1.7-a)2+(yy0/1.
15、7)2); r22=sqrt(xx0/1.7+a)2+(yy0/1.7)2);r1=sqrt(X-a).2+Y.2); %各点到点电荷的距离r2=sqrt(X+a).2+Y.2);U=k*q1./r1+k*q2./r2; %各点的电势u0=k*q1/r11+k*q2/r22;u=linspace(u0,-u0,11); %取21个等势向量contour(X,Y,U,u,k-);hold ongrid onplot(a,0,o,MarkerSize,12);plot(-a,0,o,MarkerSize,12);xlabel(x,fontsize,16);ylabel(y,fontsize,16)
16、;%平面电力线的画法Ex,Ey=gradient(-U);E=sqrt(Ex.2+Ey.2);Ex=Ex./E;Ey=Ey./E;hold on;quiver(X,Y,Ex,Ey);title(一对不相等的电荷的等势线图和电场线图,fontsize,20)clear;图3源程序:%一对电荷平面等势线和电场线图clear all;clf;%平面等势线的画法q1=1;q2=1;a=0.02;xx0=0.05;yy0=0.04;k=9e9;x=linspace(-xx0,xx0,20);y=linspace(-yy0,yy0,50);X,Y=meshgrid(x);r11=sqrt(xx0/1.7-
17、a)2+(yy0/1.7)2);r22=sqrt(xx0/1.7+a)2+(yy0/1.7)2);r1=sqrt(X-a).2+Y.2);r2=sqrt(X+a).2+Y.2);U=k*q1./r1+k*q2./r2;u0=k*q1/r11+k*q2/r22;u=linspace(u0,-u0,11);contour(X,Y,U,u,k-);hold on%平面电力线的画法Ex,Ey=gradient(-U);E=sqrt(Ex.2+Ey.2);Ex=Ex./E;Ey=Ey./E;dth1=20;th1=(dth1:dth1:180-dth1)*pi/180;r0=a/5;x1=r0*cos(
18、th1)+a;y1=r0*sin(th1);streamline(X,Y,Ex,Ey,x1,y1);streamline(-X,-Y,-Ex,-Ey,x1,-y1);q=abs(q1/q2);dth2=dth1/q;th2=(180-dth2:-dth2:dth2)*pi/180;x2=r0*cos(th2)-a;y2=r0*sin(th2);streamline(X,Y,Ex,Ey,x2,y2);streamline(X,-Y,Ex,-Ey,x2,-y2);grid onplot(a,0,o,MarkerSize,12);plot(-a,0,o,MarkerSize,12);xlabel(x
19、,fontsize,16);ylabel(y,fontsize,16);title(一对点电荷的电场分布图);clear;图4图54 实验心得本次电磁场实验是利用Matlab模拟点电荷电场的分布,刚收到实验指导书时,并不知道该怎么做,由于我们并没有正式学过Matlab,只是在局部课程如信号,自控等课上对该软件有所接触。接到实验指导书后,我去图书馆借阅了有关Matlab根底的书籍,了解了其中根底局部以及和实验有关的局部,并在网上搜约了相关资料,最后在同组同学的努力以及老师的指导下终于成功完成了实验。通过这次试验,我了解了Matlab的根本操作以及其中局部函数的应用,学会用利用Matlab模拟点电
20、荷电场的分布。另外,我还体会到自学的重要性,大学有很多东西需要自学,只有通过自学更多的知识才能更好的应用所学的课程。电磁场理论实验二 利用Matlab模拟带电粒子在磁场中的运动1 实验目的:(1) 理解数值模拟研究物理问题的思路,能独立地运用此方法研究物理问题,掌握数值模拟的编程。(2) 运用Matlab数值模拟的方法研究三维空间中带电粒子在复杂磁场环境下的运动行为。3 实验原理:带电粒子在磁场中运动时会受到洛伦兹力的作用,且随着初始运动方向和磁场分布的不同,其运动轨迹会发生不同的变化。由洛伦兹力的推导公式可知,它垂直于粒子的运动速度,不对运动粒子作功,只改变其运动方向,其大小为:;因此,综合
21、牛顿运动定律就可以精确确定带电粒子在磁场中的运动轨迹。4 实验内容:1 用Matlab数值模拟的方法模拟带电粒子在恒定磁场中的螺旋运动,即带电粒子进入磁场的方向与磁场方向的角度。2 用Matlab数值模拟的方法模拟磁聚焦现象,即在均匀磁场中某点引入一发散角不大的带电粒子束,并使束中粒子的速度v大致相同。3 有兴趣的同学可以尝试模拟磁镜现象,即从带电粒子束进入方向,磁场逐渐增强。5 实验步骤:(一)1) 带电粒子在均匀稳定电磁场中受力分析: 2) 带电粒子在均匀稳定电磁场中的运动微分方程为: 可将上式分解在直角坐标系展成标量式:令 , ,那么化简为:令 那么得出可以用MATLAB数值积分的一次微
22、分方程组: 3) 根据上述方程进行MATLAB编程:建立微分方程函数: %实验微分方程 电磁场中带电粒子function ydot=mf1(t,y,flag,q,m,b1,b2,b3)ydot=y(2); q*b3*y(4)/m-q*b2*y(6)/m; y(4);-q*b3*y(2)/m+q*b1*y(6)/m; y(6);+q*b2*y(2)/m-q*b1*y(4)/m;设置各参数的初值,并在command windows 中输入相关命令,B1=0;B2=0;B3=2;c=0,5,0,9,0,8;q=1.6e-2; m=0.02figurestrd1=E(x)neq 1,E(y)neq 1
23、,E(z)neq 1,B(x)neq o,B(y)neq o,B(z)neq 1;t,y=ode23(mf1,0:0.001:20,c,q,m,B1,B2,B3);title(strd1,fontsize,12,fontweight,demi);xlabel(x); ylabel(y); zlabel(z);view(-51,18);comet3(y(:,1),y(:,3),y(:,5);plot3(y(:,1),y(:,3),y(:,5); grid on程序中利用了ode23求解数值微分,事实上,如果利用符号积分计算运动轨迹,由于计算机速度的限制,得不到结果.利用comet3 绘制3-D动态图,利用plot3绘制3-D静止图.实验结果如图:(二)一个带电粒子进入磁场时速度的方向不与磁场垂直, 那么可将入射速度分解为沿着磁场方向的速度v1和垂直磁场的速度v2。在垂直磁场方向, 由于粒子受到洛伦兹力的作用, 做圆周运动, 运动周期为, 粒子平行于磁场方向的分速度不受
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共关系学考试高频考点及试题与答案
- 2025-2026学年广州市越秀区数学三上期末联考试题含解析
- 2025年公共关系学考试简明试题及答案
- 迷路的小花鸭情景教学课件
- 水资源合理配置试题及答案
- 如何进行项目调研试题及答案
- 大班健康快乐的秘密
- 2025年工程项目管理紧紧把握试题及答案
- 结合实际的市政工程考试试题及答案
- 管理办法培训课件
- 全国行政区域身份证代码表(电子表格版)
- 微弱的光亮(2024年山东烟台中考语文试卷记叙文阅读试题)
- 【基于单片机的智能送餐配送车设计与实现(论文)11000字】
- 新教科版小学1-6年级科学需做实验目录
- 24春国家开放大学《农业推广》调查报告参考答案
- 《特种设备目录》(2022年第114号)
- 单值移动极差图(空白表格)
- 声乐参赛评分表
- 葡萄小龙干高效栽培技术一边倒技术
- 机柜间施工方案
- 境外所得个税新政解析PPT课件
评论
0/150
提交评论