版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北师大版八上数学第四章知识点整理 一、平行四边形 (一)定义和性质: 1、定义:两组对边分别平行的四边形叫做平行四边形。 2、性质:平行四边形两对边平行 平行四边形对边相等 平行四边形的对角相等 平行四边形是中心对称图形第四章四边形性质探索 平行四边形对角线相互平分 (二)判定:两组对角线互相平分的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 两组对边分别平行的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 二、菱形 (一)定义和性质: 1、定义:一组邻边相等的平行四边形叫做菱形 2、性质:菱形的四条边都相等,两条对角线相互垂直平分
2、,每一条对角线平分一组对角,面积等于对角线乘积的一半 (二)判定:一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形 四条边都相等的四边形是菱形 三、矩形: (一)定义和性质: 1、定义:有一个内角是直角的平行四边形叫做矩形 2、性质:矩形的对角线相等,四个角都是直角 (二)判定:对角线相等的平行四边形是矩形 一个角是直角的平行四边形是矩形 四、正方形: (一)定义和性质: 1、定义:一组邻边相等的矩形叫做正方形 2、性质:正方形具有平行四边形、菱形、矩形的一切性质 边:四条边都相等且对边平行 角:四个角都是直角 对角线:对角线互相平分且垂直、相等 (二)判定:一组邻边相等的矩形
3、是正方形 对角线互相垂直的矩形是正方形 有一个角是90度的菱形是正方形 对角线相等的菱形是正方形 五、梯形和等腰梯形 (一)定义和性质:一组对边平行而另一组对边不平行的四边形叫做梯形,两条腰相等的梯形叫做等腰梯形。等腰梯形同一底上的两个内角相等,对角线相等。 ( 第四章 相似图形(课本)§1 线段的比(1)如果把大树和小颖的高分别看成如图4 -1所示的两条虚线段AB,CD,那么这两条线段的长度比是多少?(2)已知小颖的身高是1.6m,大树的实际高度是多少?两条线段长度的比与所采用的长度单有没有关系?通过思考、交流,引导学得出:线段的长度比与所采用的长度单位无关如果选用一个长度单位量得
4、两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成=.其中,线段AB:CD分别叫做这个线段比的前项和后项.如果把表示成比值k,那么=k,或AB=k·CD此处对线段比的前项、后项概念作进一步解析。例1在某市城区地图(比例尺1:9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm,10cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?解:(1)根据题意,得 学结合课本进行测量、计算、讨论、交流,尽量给出答案学交流、探讨学自学,了解“两条线段的比”的概念注意将本题与所学地
5、理学科进行联系实际长度之比等于图上长度之比,这一结论以后可以直接使用为成比例线段埋下伏笔随堂练习因此,新安大街的实际长度是 16×9000=144000(cm), 144000cm=1440m光华大街的实际长度是 10×9000=90000(cm) 90000cm=900m(2)新安大街与光华大街的图上长度之比是 16:10=8:5 新安大街与光华大街的实际长度使比是14400:90000=8:51、在比例尺为1:8000的某学校地图上,矩形运动场的图上尺寸是1cm×2cm,矩形运动场的实际尺寸是多少?2、活中还有哪些利用线段比的事例?注意单位的换算注意体会利用所
6、求得的结论推导出有用结论学计算回答通过此问题回答,紧密联系活§4.2 黄金分割图46活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C把AB分成两段AC和BC,使得画出的图形匀称美观呢?本节课就研究这个问题.讲授新课在五角星图案中,大家用刻度尺分别度量线段AC、BC的长度,然后计算、,它们的值相等吗?相等.所以.1.黄金分割的定义在线段AB上,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.61
7、8.投影片(§4.2 A)黄金分割在几何作图上有很多应用,如五角星形的各边是按黄金分割划分的,其中点C就是线段AB的一个黄金分割点.作圆的内接正十边形也能归结为黄金分割.黄金分割也被广泛用在建筑设计、美术、音乐、艺术等方面.如在设计工艺品或日用品的宽和长时,常设计成宽与长的比近似为0.618,这样易引起美感;在拍照时,常把主要景物摄在接近于画面的黄金分割点处,会显得更加协调、悦目;舞台上报幕员报幕时总是站在近于舞台的黄金分割点处,这样音响效果就比较好,而且显得自然大方,等等.黄金分割在工厂里也有着普遍的应用.如“优选法”中常用的“0.618法”就是黄金分割的一种应用.既然黄金分割的实
8、用价值这么大,我们就必须把它学好,还要用好,下面我们来学习如何找一条线段的黄金分割点.2.作一条线段的黄金分割点.图47如图,已知线段AB,按照如下方法作图:(1)经过点B作BDAB,使BD=AB.(2)连接AD,在DA上截取DE=DB.(3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.你知道为什么吗?若点C为线段AB的黄金分割点,则点C分线段AB所成的线AC、BC间须满足.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB=1.证明:AB=1,AC=x,BD=AB=AD=x+在RtABD中,由勾股定理,得(x+)2=12+()2x2+x+=1+x2=1xx2=1&
9、#183;(1x)AC2=AB·BC即:即点C是线段AB的一个黄金分割点,在x2=1x中整理,得x2+x1=0x=AC为线段长,只能取正AC=0.6180.618黄金比约为0.618.3.想一想图48古希腊时期的巴台农神庙(Parthenom Temple).把它的正面放在一个矩形ABCD中,以矩形ABCD的宽AD为边在其内部作正方形AEFD,那么我们可以惊奇地发现,,点E是AB的黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?请大家互相交流.因为四边形AEFD是正方形,所以AD=BC=AE,又因为,所以,即,因此点E是AB的黄金分割点,矩形ABCD宽与长的比是黄金比.在上面这个矩
10、形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗?.随堂练习1.解:设AB=a,根据题意,得AE=,由勾股定理,得EF=EB=aAF=AH=BEAE=aBH=ABAH=a 点H是AB的黄金分割点.§4.3 形状相同的图形(1)如图(1)同一张底片洗出的不同尺寸的照片中,人物的形状改变了吗?(2)如图(2),两个足球的形状相同吗?它们的大小呢?(3)如图(3),两个正方体物体的形状相同吗?(4)如图(4),复印前后纸上对应图形之间分别有什么关系?(1)同一张底片洗出的不同尺寸的照片中,人物的形状没有改变,只是大小不同;(2)两个足球的形状相同,大小不同;(3)两个正方体物体的形状相同;(4)复印前后纸上对应图形之间形状相同,大小不同.发现每一对图形中有什么特点呢?每对图形都是形状相同的图形,从上面的图形中我们大概了解了形状相同的图形的特点,下面我们通过观察,找出形状相同的图形.2.找形状相同的图形在实际活和数学学习中,我们常常会看到许多形状相同的图形,请从下图中找出形状相同的图形.(1)与(3);(2)与(13);(4)与(11);(5)与(10);(6)、(7)、(8)、(9)分别是形状相同的图形.3.画形状相同的图形做一做利用下面的方法可以近似地将一个图形放大:1.将2个长短相同的橡皮筋系在一起.2.选取一个图形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险赔偿合同
- 兴城租房合同
- 假的门面合同
- 二手房签买卖合同
- 无效建设工程合同
- 2025至2030汽车CD机行业产业运行态势及投资规划深度研究报告
- 2026年安徽警官职业学院单招职业倾向性考试必刷测试卷附答案
- 2026年四川体育职业学院单招职业倾向性考试题库必考题
- 2025江苏建筑工程电子交易职业技能竞赛备考试题库(含答案)
- 自主招生备考题库及答案
- 【《社区治理分析的国内外文献综述》5500字】
- 浙江精诚联盟2025-2026学年高二上学期10月联考数学(含答案)
- 2026年中考英语复习必背人教版初中单词默写
- 教育行业职业规划指南
- 医院物价员培训知识课件
- 2025年贵州省遵义市辅警考试真题及答案
- 电动葫芦安全操作培训
- 信息运维基础知识培训课件
- 2025-2030中国冷链物流行业升级路径与投资回报周期测算
- 防暴雪安全培训记录课件
- 2025矿业权评估师考试(矿业权评估经济与法律专业能力)综合试题及答案
评论
0/150
提交评论