一元一次应用2_第1页
一元一次应用2_第2页
一元一次应用2_第3页
免费预览已结束,剩余26页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、!隠塞01元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(i)审一审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出 等量关系).(2 )设一设出未知数:根据提问,巧设未知数.(3 )列一列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找 出的等量关系列出方程.(4 )解一一解方程:解所列的方程,求出未知数的值.(5)答一检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实 际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配

2、问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。第一类、行程问题基本的数量关系:(1)路程=速度x时间速度=路程*时间时间=路程*速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少) 常用的等量关系:1、甲、乙二人相向相遇问题甲走的路程+乙走的路程=总路程二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题甲走的路程一乙走的路程=提前量二人所用的时间相等或有提前量3、单人往返4、行船问题与飞机飞行问题 顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问

3、题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。6、时钟问题: 将时钟的时针、分针、秒针的尖端看作一个点来研究 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。常用数据:时针的速度是0.5 /分 分针的速度是6 /分秒针的速度是6/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为解:等量关系步行时间一乘公交车的时间=3.6小时x x列出方程是:3.68402、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早

4、出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。解:等量关系甲行的总路程+乙行的路程=总路程(18千米)设乙的速度是x千米/时,则列出方程是:12311 (x 1)21-X 1823、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到 15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 速度15千米行的总路程=速度 9千米行的总路程 速度15千米行的时间+ 15分钟=速度9千米行的时间一15分 钟老师提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。方法一:设预定时间为 x小/

5、时,则列出方程是:15 (X 0.25 )= 9 (x+ 0.25 )x15x 15方法二:设从家里到学校有 x千米,则列出方程是:-15 609 604、 在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑 280米,两人同 时同地同向起跑,t分钟后第一次相遇,t等于分钟。老师提醒:此题为环形跑道上,同时同地同向的追击问题(且为第一次相遇)等量关系:快者跑的路程一慢者跑的路程=800 (俗称多跑一圈)320t 280t =800 t=205、 一列客车车长 200米,一列货车车长 280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之

6、比是3 : 2,问两车每秒各行驶多少米?老师提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为 3x米/秒,货车的速度为 2x米/秒,则16 X3x + 16 X2x= 200 + 2806、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。行人的速度为每秒多少米? 这列火车的车长是多少米?老师提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击

7、问题。等量关系:两种情形下火车的速度相等两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的 方程。解: 行人的速度是:3.6km/时=3600米-3600秒=1米/秒骑自行车的人的速度是:10.8km/ 时=10800 米-3600 秒=3 米/ 秒方法一:设火车的速度是x 米/ 秒,贝U 26 X(x 3) = 22 X(x- 1)解得 x = 4方法二:设火车的车长是土刑x 22 1 x 26 3x米,则22 267、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我

8、和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(提示:此题为典型的追击问题)解:设爸爸用x小时追上我们,则 6x = 2x + 2 X1解得x= 0.50.5小时V 1小时45分钟 答:能追上。8、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是 5千米/时,步行者比汽车提前 1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)老师提醒:此类题相当于环形跑道问题,两者行的总

9、路程为一圈即 步行者行的总路程+汽车行的总路程=60 X25x + 60(x 1) = 60解:设步行者在出发后经过 x小时与回头接他们的汽车相遇,则X29、 一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是【】(A) 60 秒 (B) 50 秒(C) 40 秒(D) 30 秒老师提醒:将车尾看作一个行者,当车尾通过600米的隧道再加上150米的车长时所用的时间,就是所求的完全通过的时间,哈哈!你明白吗?解:时间=(600 + 150) -15 = 50 (秒) 选 B。10、 某人计划骑车以每小时12千米的速度由 A地到B地,这

10、样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时 15千米的速度前进,结果比规定时间早 4分钟到达B地,求A、B两地间的距离。解:方法一:设由 A地到B地规定的时间是 x小时,则20412x= 15 xx = 212 x = 12 X2 = 24(千米)60 60方法二:设由A、B两地的距离是 x千米,则(设路程,列时间等式)20 x = 24 答:A、B两地的距离是 24千米。12156060温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。11、 甲、乙两人相距5千米,分别以2千米/时的速度相向而行,同时一只小狗以12千米/时的速度

11、从甲处奔向乙,遇到乙后立即掉头奔向甲,遇到甲后又奔向乙直到甲、乙相遇,求小狗所走的路程。注:此为二题合一的题目,即独立的二人相遇问题和狗儿的独自奔跑。只是他们的开始与结束时间是一样的,解:以此为联系,使本题顿生情趣,为诸多中小学资料所米纳。55设甲、乙两人相遇用x时,则2x + 2x 5 x12x 1215(千米)44答:小狗所走的路程是 15千米。12、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是 10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。老师解析:只要将车尾看作一个行人去分析即可

12、,前者为此人通过300米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。解:方法一:设这列火车的长度是x米,根据题意,得300 x x20 10x= 300答:这列火车长 300米。方法二:设这列火车的速度是 x米/秒,根据题意,得 20 x- 300 = 10x x= 3010x = 300答:这列火车长300 米。13、甲、乙两地相距 x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,x x列方程得。 答案:60101514、列车在中途受

13、阻,耽误了 6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?x x 6解:设走x千米就补上耽误的时间,则x = 20405060答:走20千米就补上耽误的时间。100米,慢车车长150米,已知15、两列火车分别行驶在平行的轨道上,其中快车车长为当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少? 如果两车同向而行, 慢车速度为8米/秒,快车从后面追赶慢车, 那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?老师解析: 快车驶过慢车

14、某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长! _ 慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长! _ 快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和! _解: 两车的速度之和=100廿=20 (米/秒)慢车经过快车某一窗口所用的时间=150 +20 = 7.5 (秒) 设至少是 x秒,(快车车速为 20 8 )贝9(20 8) x 8x = 100 + 150 x =62.5答:至少62.5秒快车从后面追赶上并全部超过慢车。16、甲、乙两人同时从

15、A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比 乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时 已过了 3小时。求两人的速度。解:设乙的速度是 x千米/时,则3x+ 3 (2x + 2) = 25.5 X2/ x= 52x+ 2= 12答:甲、乙的速度分别是 12千米/时、5千米/时。17、一辆汽车上午10 : 00从安阳出发匀速行驶, 途经曲沟、水冶、铜冶三地,时间如下表,地名安阳曲沟铜冶时间10 : 0010 : 1511 : 00水冶在曲沟和铜冶两地之间,距曲沟10千米,距铜冶20千米,安阳到水冶的路程有多少千米?解:设安阳到

16、水冶有 x千米,则x 10 x 20 亠或0.251x 1010200.250.75解,得 x = 20 答:安阳到水冶的路程有 20千米。18、甲骑自行车从 A地到B地,乙骑自行车从 B到A地,两人都匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距 36千米,到中午12时,两人又相距 36千米,求A、B两地间的路程。解:设A、B两地间的路程是 x千米,则x 36 x 36万法一:24方法二:x + 36 = 36 X2 X2解,得x = 108答:A、B两地间的路程是108千米。二、环行跑道与时钟问题:1、在6点和7点之间,什么时刻时钟的分针和时针重合?老师解析:6 : 00时

17、分针指向12,时针指向6,此时二针相差180 ,在6: 007 : 00之间,经过x分钟当二针重合时,时针走了0.5X 分针走了 6x以下按追击问题可列出方程,不难求解。解:设经过x分钟二针重合,则 6x= 180 + 0.5x 解得x 360 32 11 112、甲、乙两人在 400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑 200米,人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。解:设同时同地同向出发 x分钟后二人相遇,则240 x 200 x= 400x= 10 设背向跑,x分钟后相遇,则 240 x+ 2

18、00 x = 4001x=113、在3时和4时之间的哪个时刻,时钟的时针与分针:重合;成平角;成直角;解: 设分针指向3时x分时两针重合。x1x121801141611答:在3时16分时两针重合。11设分针指向3时x分时两针成平角。3丄x126049丄11答:在13时49 分时两针成平角。11设分针指向3时x分时两针成直角。x608答:在3时32 分时两针成直角。114、某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?解:方法一:设准确时间经过 x分钟,贝U x : 380 = 60 : (60 3)解得 x = 40

19、0 分=6 时 40 分6: 30 + 6 : 40 = 13 : 10315方法二:设准确时间经过 x时,则 x 6 x 126026三、行船与飞机飞行问题:1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要 2小时,逆水航行需要3小时,求两码头之间的距离。解:设船在静水中的速度是x千米/时,贝U 3 X(x 3) = 2X(x+ 3)解得x= 15 2 X(x+ 3) = 2 X(15 + 3) = 36 (千米)答:两码头之间的距离是36千米。2、 一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要 2小时50分钟,逆风飞行需要3小时,求两城市间的距离。5解:

20、设无风时的速度是 x千米/时,贝U 3 X(x 24) = 2 - X(x + 24)63、 小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。解:设水流速度为 x千米/时,贝U 9(10 x) = 6(10 + x)解得x = 2 答:水流速度为 2 千米/时4、 某船从A码头顺流航行到 B码头,然后逆流返行到 C码头,共行20小时,已知船在静 水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。解:设A与B的距离是x千米,(请你按下面的分类画出示意图,来理解所列方程当C在A、B

21、之间时,x40207.52.57.5 2.5当C在BA的延长线上时,x x x 407.5 2.57.5 2.5解得x = 12020 解得x = 56答:A与B的距离是120千米或56千米。第二类:工程问题工程问题的基本关系:工作量=工作效率X工作时间;工作效率=工作量十工作时间;工作时间=工作量十 工作效率注意:一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=11、做某件工作,甲单独做要8小时才能完成,乙单独做要 12小时才能完成,问:甲做1小时完成全部工作量的几分之几?乙做1小时完成全部工作量的几分之几?甲、乙合做1小时完成全部工作量的几分之几?甲做x小时完成全部工作量

22、的几分之几?甲、乙合做X小时完成全部工作量的几分之几?甲先做2小时完成全部工作量的几分之几?1 18 121X8J 1、(8 石)x1 28乙后做3小时完成全部工作量的几分之几?丄312甲、乙再合做x小时完成全部工作量的几分之几?(1三次共完成全部工作量的几分之几?结果完成了工作,则可列出方程:1 1(1 112)x 1一项工程,甲单独做要 10天完成,乙单独做要15天完成,两人合做 4天后,剩下的部分由乙单独做,还需要几天完成?111解:设还需要x天完成,依题意,得()4 x 1 解得x=5答:还需10 1515要5天完成3、 食堂存煤若干吨,原来每天烧煤4吨,用去15吨后,改进设备,耗煤量

23、改为原来的一半,结果多烧了 10天,求原存煤量解:设原存煤量为 x吨,依题意,得 口510 解得x=55答:原存煤量为2 455吨4、 一水池,单开进水管 3小时可将水池注满,单开出水管4小时可将满池水放完。现对空水池先打开进水管 2小时,然后打开出水管,使进水管、出水管一起开放,问再过几小时可将水池注满?-X天完成。由题意得3解:设再过x小时可将水池注满,依题意,得 1 2 (- 1)x 1 解得x=4 答:再3 3 4过4小时可将水池注满。5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程已知甲队单独做所需天数是乙队单独做所需天数的I,问甲、乙两队单

24、独做,各需多少天?答:常规解法:设乙队单独做要x天完成,那么甲队单独做要3一芹巧解:设乙队每天完成的工作量为 x,那么甲队每天完成的工作量为 2 ,由题意得:6、一项工程300人共做,需要40天,如果要求提前10天完成,问需要增多少人?解:由已知每人每天完成丽0,设需要增则列出方程为K x 300 30x人,1 解得x=100答:需要增100人7、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务 ? 答:41解:设甲、乙两个龙头齐开 x小时。由已知得,甲每小时灌池子的,乙每小时灌池子I的1。3、 11

25、1I15I55列方程:一X0.5+(+)x=,+ x=x=II3346361Ix=1=0.5x+0.5=1(小时)I答:一共需要1小时。8、 一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水如果两水管同时打开,那么经过几小时可把空水池灌满?11解:令水箱为1,进水管每小时注水一,出水管每小时放水-,46设两水管同时打开,经过x小时可把空水池灌满1 1则由题意列出方程为()x=1,解得x=12469、 某工厂计划26小时生产一批零件,后因每小时多生产 5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?X(広 5) 24 60 X

26、,X=78010、某工程,甲单独完成续 20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程 ?1-6(201 1)= X X=2.4121211、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?1 1 11 ( 25 20)5 20X ,X=1112、 完成一项工程甲需要a天,乙需要b天,则二人合做需要的天数为,11、 ab1/( )a b a b某工人原计划每天生产 a个零件,现实际每天多生产 b个零件,则生产 m个零件提前的天数为(m一a a bbma(a b)13、一个水池安有甲乙丙

27、三个水管,甲单独开12h注满水池,乙单独开 8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?X=614、甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少 3t,问原来甲、乙两个水池各有多少吨水?X-5+3=50-X+8X=2750-27=2315、将一批工业最新动态信息输入管理储存网络,甲独做需先做306小时,乙独做需4小时,甲分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?11x=52小时12分二、市场经济问题1. 某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就

28、餐;同时开放 2个大餐厅、1个小餐厅,可供 2280名学生就餐.(1 )求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y )名学生就餐,根据题意,得 2 (1680-2y ) +y=2280 解得:y=360 (名)所以 1680-2y=960 (名) (2)因为 960 5 360 2 5520 5300,所以如果同时开放 7个餐厅,能够供全校的5300名学生就餐.2. 工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与

29、将标价降低 35元销售该工艺品12件所获利润相等该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是X元,标价是(45+x)元.依题意,得:8 ( 45+x) X 0.85-8x= (45+X-35 ) X 12-12x 解得:x=155 (元)所以 45+x=200 (元)3. ( 2006 益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么? 李小波:我只有 100元,请帮我安排买 10支钢笔和 15本笔记本 . 售货员:好,每支钢笔比每本笔记本贵2 元,退你 5 元,请清点

30、好,再见 .根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?解:设笔记本每本 x元,则钢笔每支为(x+2)元,据题意得10 (x+2) +15x=100-5 解得,x=3 (元)所以 x+2=5 (元)答:(略).4. 某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦 则超过部分按基本电价的70%收费( 1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a( 2)若该用户九月份的平均电费为0.36 元,则九月份共用电多少千瓦??应交电费是多少元? 解:(1)由题意,得 0.4a+( 84-a )x 0.40 x 70%=30.72 解得 a=60

31、(2)设九月份共用电 x 千瓦时,0.40 X 60+ (x-60 )x 0.40 x 70%=0.36x 解得 x=90 所以 0.36 x 90=32.40 (元)答:90 千瓦时,交 32.40 元5. 某家电商场计划用 9万元从生产厂家购进 50台电视机已知该厂家生产 3?种不同型号的电视机,出厂价分别为 A种每台1500元,B种每台2100元,C种每台2500元.(1) 若家电商场同时购进两种不同型号的电视机共50台,用去 9万元, 请你研究一下 商场的进货方案.(2)若商场销售一台 A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利 250元,在

32、同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?解:按购A, B两种,B, C两种,A, C两种电视机这三种方案分别计算, 设购A种电视机x台,贝U B种电视机y台.(1)当选购 A, B两种电视机时,B种电视机购(50-x )台,可得方程1500x+2100( 50-x )=90000当选购 A, C 两种电视机时,x=25 50-x=25C种电视机购(50-x )台,可得方程1500x+2500(50-x )=90000x=35 50-x=15当购B, C两种电视机时,C种电视机为(50-y )台.可得方程2100y+2500 ( 50-y )=90000 4y=

33、350 ,不合题意可选两种方案:一是购 A, B两种电视机25台;二是购 A种电视机35台,C种电视机 15 台.(2)若选择(1),可获利 150X 25+250 X 15=8750 (元)若选择(1),可获利 150 X 35+250 X 15=9000 (元)故为了获利最多,选择第二种方案.6. 某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为元,八折出售后,商家所获利润率为 40%。问这种鞋的标价是多少元?优惠价是多少?利润率=利本成本40%=80%X6060X=105105*80%=84 元7某产品按原价提高 40%后打八折销售,每件商品赚270元,问该商品

34、原标价多少元?现销售价是多少? X(1+40%)80% - X=270X=22502250(1+40%)80%=2520 元8甲乙两件衣服的成本共 500元,商店老板为获取利润,决定将家服装按50%的利润定价, 乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?甲X乙50-X109X(1+50%)-X+(500-X)(1+40%)90% - (500 - X)=157X=300某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张

35、?8X+5(1000-X)=6950X=6501000-650=350利润问题利润问题的基本关系:获利=售价-进价打几折就是原价的十分之几1某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?(48+X)90%*6 -6X=(48+X-30)*9 -9X X=162162+48=2102、甲、乙两种商品的单价之和为 100元,因为季节变化,甲商品降价10%,乙商品提价5%, 调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?x(1-10%)+(100-x)(1+5%

36、)=100(1+2%)x=20四、分配问题5个或乙种零件4个.在这16名工人?已知每加工一个甲种零件可获利1某车间有16名工人,每人每天可加工甲种零件中,一部分人加工甲种零件,其余的加工乙种零件.16元,每加工一个乙种零件可获利24元若此车间一共获利 1440元,?求这一天有几个工人加工甲种零件.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有 5x个,乙种零件有 4( 16-x )个.根据题意,得 16X 5x+24X 4 ( 16-x ) =1440解得 x=62 有两个工程队,甲工程队有 32人,乙工程队有 28人,如果是甲工程队的人数是工程 队人数的2倍,需从乙工程队抽调多少人

37、到甲工程队?32+X=(28-X)*2X=87人还余1人,若每组83某班同学利用假期参加夏令营活动,分成几个小组,若每组 人还缺6人,问该班分成几个小组,共有多少名同学?7X+1=8X-6X=74.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长方体铁盒中的水,倒入一个内径为 200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, 疋3.14 ).解:设圆柱形水桶的高为 x毫米,得 ( 200 ) 2x=300 X 300 X 80 x疋229.325有某种三色冰淇淋 50克,咖啡色、红色和白色配料的比是2 : 3: 5, ?这种三色冰淇淋中咖啡色、红

38、色和白色配料分别是多少克?解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得 2x+3x+5x=50 得 x=5 于是 2x=10 , 3x=15 , 5x=25五、数字问题数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同1 一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.10(X+1)+X+10X+X+1+33x=1 为 212已知三个连续偶数的和是 2004,求这三个偶数各是多少?X+2+X+X-2=2004x=668666 668 670年龄问题(15+x)*2=39+x

39、(2 )三位同学甲乙丙,甲比乙大倍?x=9(1)某同学今年15岁,他爸爸今年39岁,问几年以后,爸爸的年龄是这位同学年龄的1岁,乙比丙大2岁,三人的年龄之和为41,求乙同学的年龄.x+1+x+x-2=41x=14(3)今年哥俩的岁数加起来是55岁。曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍哥哥今年几岁?曾经:哥哥 弟弟X曾经:哥哥弟弟X2今年:55-XX 今年:X+ X2XxX+ +X =55X=2255-x-x= X- X=2222(4).兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的

40、年龄是15+x,弟的年龄是9+x.由题意,得 2X( 9+x) =15+x 18+2x=15+x , 2x-x=15-18 / x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3?年后具有相反意义的量)(一) 和、差、倍、分问题读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相 等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代 数式,得到方程1、倍数关系:通过关键词语“是几倍,增加几倍

41、,增加到几倍,增加百分之几, 增长率”来体现。2、多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。增长量=原有量X曽长率现在量=原有量+增长量例1.某单位今年为灾区捐款 2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2旅行社的一辆汽车在第一次旅程中用去油箱里汽油的 25%,第二次旅程 中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少 1公斤,求油箱 里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。常用等量关系为:原料体积二成品体积。常见几何图形的面积、体积、 周长计算 公式,依据形虽变,但体积不变.2 圆柱体的体积公式

42、V底面积4高=Sh= r h 长方体的体积V=长X宽/高=abc【典型问题】例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3 米的圆柱形机轴多少根?(三)数字问题1要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b, 个位数字为c (其中a、b、c均为整数,且1 a9, 0 b9, 0 c 9),则这 个三位数表示为:100a+10b+c.2数字问题中一些表示:两个连续整数之间的关系, 较大的比较小的大1;偶数 用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n 1表示。例4.有一个三位数,个位数字为百位数字的 2倍,十位数字比百

43、位数字大1, 若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的 2倍少49,求原 数。例5. 个2位数,个位上的数字比十位上的数字大 5,且个位上的数字与十位 上的数字的和比这个2位数的 大6,求这个2位数。(四)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价 (或成本)、售价、标价(或定价)、利润 等。(2)利润问题常用等量关系:商品利润=商品售价一商品进价=商品标价X折扣率一商品进价商品利润商品售价一商品进价商品利润率=商品进价xioo%= 商品进价X100%(3)商品销售额=商品销售价X商品销售量商品的销售利润=(销售价-成本价)X销售量(4) 商

44、品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售, 即按原标价的80%出售.即商品售价二商品标价X折扣率.【典型问题】例5: 一家商店将某种服装按进价提高 40%后标价,又以8折优惠卖出,结果 每件仍获利15元,这种服装每件的进价是多少?(五)行程冋题 画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意 画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的 关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已 知量),填入有关的代数式是获得方程的基础1行程问题中的三个基本量及其关系:路程=速度 刈寸间时间=路程 锂

45、度 速度=路程 诩寸间2行程问题基本类型(1) 相遇问题:快行距+慢行距=原距(2) 追及问题:快行距慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度水流(风)速度水流速度二(顺水速度-逆水速度)* 2抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即 顺水逆水问题常用等量关系:顺水路程 二逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。【典型问题】例6:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行 90公里,一 列快车从乙站开出,每小时行 140公里。(1)慢车先开出1小时,快车再开。两车相向而行。

46、问快车开出多少小时后两 车相遇?(2) 两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)例7: 一艘船在两个码头之间航行,水流速度是 3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(六)工程问题1. 工程问题中的三个量及其关系为:工作总量工作效率 一一 工作总量=工作效率X工作时间工作时间工作总量工作时间 -工作效率2 经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的二完成量.【典型问题】例9: 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?例10: 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管 9小时可将满池水排空,若 先将甲、乙管同时开放2小时,然后打开丙管,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论