




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、无穷级数 无穷级数无穷级数数项级数数项级数幂级数幂级数傅氏级数(数一)傅氏级数(数一)第十一章常数项级数的概念和性质 一、常数项级数的概念一、常数项级数的概念 二、无穷级数的基本性质二、无穷级数的基本性质 三、级数收敛的必要条件三、级数收敛的必要条件 第一节 第十一章 一、常数项级数的概念一、常数项级数的概念 引例引例 用圆内接正多边形面积逼近圆面积.依次作圆内接正),2, 1,0(23nn边形, 这个和逼近于圆的面积 A .0a1a2ana设 a0 表示,时n即naaaaA210内接正三角形面积, ak 表示边数增加时增加的面积, 则圆内接正边形面积为n23定义定义: 给定一个数列,321n
2、uuuu将各项依,1nnu即1nnunuuuu321称上式为无穷级数, 其中第 n 项nu叫做级数的一般项,级数的前 n 项和nkknuS1称为级数的部分和部分和.nuuuu321次相加, 简记为1nnuS当级数收敛时, 称差值21nnnnuuSSr为级数的余项余项.,lim不存在若nnS则称无穷级数发散发散 .显然0limnnr,lim存在若SSnn收敛收敛 ,则称无穷级数并称 S 为级数的和和,记作例例1. 讨论等比级数 (又称几何级数)0(20aqaqaqaaqannn( q 称为公比 ) 的敛散性. 解解: 1) 若,1q12nnqaqaqaaSqqaan1时,当1q, 0limnnq
3、由于从而qannS1lim因此级数收敛 ,;1 qa,1时当q,limnnq由于从而,limnnS则部分和因此级数发散 .其和为2). 若,1q,1时当qanSn因此级数发散 ;,1时当qaaaaan 1) 1(因此nSn 为奇数n 为偶数从而nnSlim综合 1)、2)可知,1q时, 等比级数收敛 ;1q时, 等比级数发散 .则,级数成为,a,0不存在 , 因此级数发散.例例2. 判别下列级数的敛散性: .) 1(1)2( ;1ln) 1 (11nnnnnn解解: (1) 12lnnSnnln) 1ln()2ln3(ln) 1ln2(ln) 1ln( n)n(所以级数 (1) 发散 ;技巧技
4、巧:利用 “拆项相消拆项相消” 求和23ln34lnnn1ln(2) ) 1(1431321211nnSn211111n)n(1所以级数 (2) 收敛, 其和为 1 .31214131111nn技巧技巧:利用 “拆项相消拆项相消” 求和二、无穷级数的基本性质二、无穷级数的基本性质 性质性质1. 若级数1nnu收敛于 S ,1nnuS则各项乘以常数 c 所得级数1nnuc也收敛 ,说明说明: 级数各项乘以非零常数后其敛散性不变 .即其和为 c S .性质性质2. 设有两个收敛级数,1nnuS1nnv则级数)(1nnnvu 也收敛, 其和为.S说明说明:(2) 若两级数中一个收敛一个发散 , 则)
5、(1nnnvu 必发散 . 但若二级数都发散 ,)(1nnnvu 不一定发散.例如例如, ,) 1(2nnu取,) 1(12 nnv0nnvu而(1) 性质2 表明收敛级数可逐项相加或减 .性质性质3. 在级数前面加上或去掉有限项有限项, 不会影响级数的敛散性.性质性质4. 收敛级数加括弧后所成的级数仍收敛于原级数的和.推论推论: 若加括弧后的级数发散, 则原级数必发散.注意注意: 收敛级数去括弧后所成的级数不一定收敛.,0) 11 () 11 (但1111发散.例如,三、级数收敛的必要条件三、级数收敛的必要条件 性质5、设收敛级数,1nnuS则必有.0limnnu可见: 若级数的一般项不趋于
6、若级数的一般项不趋于0 , 则级数必发散则级数必发散 .例如例如,1) 1(544332211nnn其一般项为1) 1(1nnunn不趋于0,因此这个级数发散.nun,时当注意注意:0limnnu并非级数收敛的充分条件.例如例如, 调和级数nnn13121111虽然,01limlimnunnn但此级数发散 .事实上事实上 , 假设调和级数收敛于 S , 则0)(lim2nnnSSnn2nnnn21312111但nnSS2矛盾! 所以假设不真 .21二、交错级数及其审敛法二、交错级数及其审敛法 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 第二节第二节一、正项级数及其审敛法一、正项级数及其审敛法
7、常数项级数的审敛法常数项级数的审敛法 第十一章 一、正项级数及其审敛法一、正项级数及其审敛法若,0nu1nnu定理定理 1. 正项级数1nnu收敛部分和序列nS有界 .则称为正项级数 .定理定理2 (比较审敛法比较审敛法) 设,1nnu1nnv且存在,ZN对一切,Nn 有(1) 若强级数1nnv则弱级数1nnu(2) 若弱级数1nnu则强级数1nnv则有收敛 ,也收敛 ;发散 ,也发散 .nnvku 是两个正项级数, (常数 k 0 ),例例1. 讨论 p 级数pppn131211(常数 p 0)的敛散性. 解解: 1) 若, 1p因为对一切,Zn而调和级数11nn由比较审敛法可知 p 级数1
8、1npnn1发散 .发散 ,pn1, 1p因为当nxn1,11ppxn故nnppxnn1d11nnpxx1d1111) 1(111ppnnp考虑强级数1121) 1(1ppnnn的部分和n111) 1(11ppnkkkn故强级数收敛 , 由比较审敛法知 p 级数收敛 .时,1) 1(11pn11111) 1(113121211pppppnn12) 若调和级数与 p 级数是两个常用的比较级数.若存在,ZN对一切,Nn ,1) 1(nun, ) 1(1)2(pnupn.1收敛则nnu;1发散则nnu证明级数1) 1(1nnn发散 .证证: 因为2) 1(1) 1(1nnn),2, 1(11nn而级
9、数111nn21kk发散根据比较审敛法可知, 所给级数发散 .例例2.2.定理定理3. (比较审敛法的极限形式),1nnu1nnv,limlvunnn则有两个级数同时收敛或发散 ;(2) 当 l = 0 ,1收敛时且nnv;1也收敛nnu(3) 当 l = ,1发散时且nnv.1也发散nnu设两正项级数满足(1) 当 0 l 时,nunv,limlvunnn是两个正项级数正项级数, (1) 当 时, l0两个级数同时收敛或发散 ;特别取,1pnnv 可得如下结论 :对正项级数,nu,1p l0lnnnlimpn,1p l0发散nu(2) 当 且 收敛时,0lnv(3) 当 且 发散时, lnv
10、也收敛 ;nu也发散 .nu收敛nu的敛散性. nnn1lim例例3. 判别级数11sinnn的敛散性 .解解: nlim sin1nn11根据比较审敛法的极限形式知.1sin1发散nn例例4. 判别级数1211lnnn解解:nlim221limnnn1根据比较审敛法的极限形式知.11ln12收敛nnnn1sin)1ln(21n21n2n211lnn定理定理4 . 比值审敛法 ( Dalembert 判别法)设 nu为正项级数, 且,lim1nnnuu则(1) 当1(2) 当1时, 级数收敛 ;或时, 级数发散 .1lim1nnnuu说明说明: 当时,级数可能收敛也可能发散.例如例如, , p
11、 级数:11npnnnnuu1limppnnn1) 1(1lim1但, 1p级数收敛 ;, 1p级数发散 . limn例例5. 讨论级数)0(11xxnnn的敛散性 .解解: nnnuu1limnxn) 1( 1nxnx根据定理4可知:,10时当 x级数收敛 ;,1时当 x级数发散 ;.1发散级数nn,1时当 x例例6. 讨论级数12!nnnnn的敛散性 .定理定理5. 根值审敛法 ( Cauchy判别法) 设 1nnu为正项级,limnnnu则;,1) 1(级数收敛时当 .,1)2(级数发散时当 数, 且时 , 级数可能收敛也可能发散 .1例如 , p 级数 :11pnnpnnnnu1)(1
12、n说明说明 :,1pnnu 但, 1p级数收敛 ;, 1p级数发散 .例例7. 讨论级数1()21nnnn的敛散性 .例例8. 讨论级数( 1)13lnnnnnn 的敛散性 .二二 、交错级数及其审敛法、交错级数及其审敛法 则各项符号正负相间的级数nnuuuu1321) 1(称为交错级数交错级数 .定理定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:则级数; ),2, 1() 11nuunn,0lim)2nnunnnu11) 1(收敛 , 且其和 ,1uS 其余项满足.1nnur,2, 1,0nun设收敛收敛nn1) 1(4131211) 11!1) 1(!41!31!211
13、)21nn用Leibnitz 判别法判别法判别下列级数的敛散性:nnn10) 1(104103102101)31432收敛上述级数各项取绝对值后所成的级数是否收敛 ?;1) 11nn;!1)21nn.10)31nnn发散收敛收敛 ! ) 1(1 n!1n11 nnnuu1 101 1nnnn10 nn1101 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 定义定义: 对任意项级数,1nnu若若原级数收敛, 但取绝对值以后的级数发散, 则称原级111) 1(nnn,! ) 1(1) 1(11nnn1110) 1(nnnn1nnu收敛 ,1nnu数1nnu为条件收敛 .均为绝对收敛.例如例如 :绝
14、对收敛 ;则称原级数条件收敛 .定理定理7. 绝对收敛的级数一定收敛 .说明:上述逆定理不一定成立。即nu发散nu发散例例9. 证明下列级数绝对收敛 :.) 1()2(;sin) 1 (1214nnnnennn证证: (1),1sin44nnn而141nn收敛 ,14sinnnn收敛因此14sinnnn绝对收敛 .(2) 令,2nnenu nnnuu1lim limn12) 1(nennen2211limnnen11e因此12) 1(nnnen12) 1(nnnen收敛,绝对收敛.内容小结内容小结1. 利用部分和数列的极限判别级数的敛散性2. 利用正项级数审敛法必要条件0limnnu不满足发
15、散满足比值审敛法 limn1nunu根值审敛法nnnulim1收 敛发 散1不定 比较审敛法用它法判别积分判别法部分和极限13. 任意项级数审敛法为收敛级数1nnu设Leibniz判别法:01nnuu0limnnu则交错级数nnnu1) 1(收敛概念:,1收敛若nnu1nnu称绝对收敛,1发散若nnu条件收敛1nnu称例1、(06,一,三)若nac则级数( )A、nacB、( 1)nnacC、1nna acD、12nnaac例2、(05,三)设0,1,2,nun若( 1)nnnuu发散,收敛,则下列结论正确的是( )A、212nnuu收敛,发散B、212nnuu发散,收敛C、212nnuu()
16、收敛D、212nnuu()收敛第三节一、函数项级数的概念一、函数项级数的概念 二、幂级数及其收敛性二、幂级数及其收敛性 三、幂级数的运算三、幂级数的运算 幂级数 第十一章 一、一、 函数项级数的概念函数项级数的概念设121)()()()(nnnxuxuxuxu为定义在区间 I 上的函数项级数函数项级数 .对, I0 x若常数项级数10)(nnxu敛点敛点, 所有收敛点的全体称为其收敛域收敛域 ;若常数项级数10)(nnxu为定义在区间 I 上的函数, 称收敛,发散 ,所有0 x称为其收收 0 x称为其发散点发散点, ),2, 1()(nxun发散点的全体称为其发散域发散域 ., )(xS为级数
17、的和函数和函数 , 并写成)()(1xuxSnn若用)(xSn)()(1xuxSnkkn令余项)()()(xSxSxrnn则在收敛域上有, )()(limxSxSnn0)(limxrnn表示函数项级数前 n 项的和, 即在收敛域上, 函数项级数的和是 x 的函数 称它例如例如, 等比级数它的收敛域是, )1,1(,11,(),及nnnxxxx201xxnn110它的发散域是或写作.1x又如又如, 级数, )0(02xnxxnnn,)(limxunn级数发散 ;所以级数的收敛域仅为. 1x,)1,1(时当x有和函数 ,1时收敛当x,10时但当 x二、幂级数及其收敛性二、幂级数及其收敛性 形如00
18、)(nnnxxa202010)()(xxaxxaa的函数项级数称为幂级数幂级数, 其中数列), 1 , 0(nan下面着重讨论00 x0nnnxannxaxaxaa2210例如, 幂级数1,110 xxxnn为幂级数的系数系数 .即是此种情形.的情形, 即nnxxa)(0称 ox发 散发 散收 敛收敛 发散定理定理 1. ( Abel定理定理 ) 若幂级数0nnnxa,0点收敛在xx 则对满足不等式0 xx 的一切 x 幂级数都绝对收敛.反之, 若当0 xx 0 xx 的一切 x , 该幂级数也发散 . 时该幂级数发散 , 则对满足不等式幂级数在 (, +) 收敛 ;由Abel 定理可以看出,
19、 0nnnxa中心的区间. 用R 表示幂级数收敛与发散的分界点,的收敛域是以原点为则R = 0 时, 幂级数仅在 x = 0 收敛 ;R = 时,0 R幂级数在 (R , R ) 收敛 ;(R , R ) 加上收敛的端点称为收敛域收敛域.R 称为收敛半径收敛半径 , 在R , R 可能收敛也可能发散 .Rx外发散; 在(R , R ) 称为收敛区间收敛区间.ox发 散发 散收 敛收敛 发散定理定理2. 若0nnnxa的系数满足,lim1nnnaa;1R;R.0R1) 当 0 时,2) 当 0 时,3) 当 时,则 0nnnxa的收敛半径为说明说明: :据此定理1limnnnaaR对端点 x =
20、1, 1limnnnaaRnxxxxnn 132) 1(32的收敛半径及收敛域.解解:11nn11对端点 x = 1, 级数为交错级数,1) 1(11nnn收敛; 级数为,11nn发散 . . 1, 1(故收敛域为例例1 1.求幂级数 limn 例例2. 求下列幂级数的收敛域 :.!)2(;!1) 1 (00nnnnxnxn解解: (1) limlim1nnnnaaR!1n) 1(limnn所以收敛域为. ),(2) limlim1nnnnaaR!n!) 1( n11limnn0所以级数仅在 x = 0 处收敛 .规定: 0 ! = 1! ) 1(1n例例3.nnxnn202) !(! )2(
21、求幂级数的收敛半径 .解解: 级数缺少奇次幂项,不能直接应用定理2,比值审敛法求收敛半径. lim)()(lim1nnnnxuxu2!) 1( ! ) 1(2nn2!2nn22)1()22( )12(limxnnnn24x142x当时级数收敛时级数发散 故收敛半径为 .21R21x即142x当21x即) 1(2nxnx2故直接由例例4.12) 1(nnnnx求幂级数的收敛域.解解: 令 ,1 xt级数变为nnntn121nnnnaaRlimlim1nn21) 1(211nnnnnnn2) 1(2lim12当 t = 2 时, 级数为,11nn此级数发散;当 t = 2 时, 级数为,) 1(1
22、nnn此级数条件收敛;因此级数的收敛域为,22t故原级数的收敛域为,212x即.31x三、幂级数的运算三、幂级数的运算定理定理3. 设幂级数nnnxa0nnnxb0及的收敛半径分别为,21RR令nnnxa0)(0为常数nnnxa1Rx ,min21RRR nnnnnnxbxa00,)(0nnnnxbaRx ,0nnnxcRx 则有 :nnnnnnxbxa00其中knnkknbac0说明说明: 两个幂级数相除所得幂级数的收敛半径可能比原来两个幂级数的收敛半径小得多. 例如, 设 nnnxa0nnnxb0),2, 1,0, 1(0naan,3,2,0, 1, 110nbbbn它们的收敛半径均为,R
23、但是nnnxa0nxxx21其收敛半径只是 .1R1x1nnnxb0 x11定理定理4 若幂级数nnnxa0的收敛半径,0R)(xS数nnnxaxS0)(,11nnnxan),(RRxxxaxxSnxnnxdd)(000,110nnnxna),(RRx则其和函在收敛域上连续, 且在收敛区间内可逐项求导与逐项求积分, 运算前后收敛半径相同: 注注: 逐项积分时, 运算前后端点处的敛散性不变.例例5. 求级数01nnnx的和函数. )(xS解解: 易求出幂级数的收敛半径为 1 , 时级数且1x01)(nnnxxS xnnxxx00d1xxxx0d111)1ln(1xx) 10( x1x及收敛 ,
24、有时则当,0 x0111nnnxxxnnxxx00d1) 1 ,0()0, 1x)(xS, )1ln(1xx因此由和函数的连续性得:)(xS而)0(S,1)1 (lnlim0 xxx, )1ln(1xx,10 x,1) 10( x1x及内容小结内容小结1. 求幂级数收敛域的方法1) 对标准型幂级数先求收敛半径 , 再讨论端点的收敛性 .2) 对非标准型幂级数(缺项或通项为复合式)求收敛半径时直接用比值法或根值法,2. 幂级数的性质1) 两个幂级数在公共收敛区间内可进行加、减与)0(0nnnnaxa也可通过换元化为标准型再求 .乘法运算. 2) 在收敛区间内幂级数的和函数连续;3) 幂级数在收敛
25、区间内可逐项求导和求积分.第四节两类问题: 在收敛域内和函数)(xSnnnxa0幂级数求 和展 开本节内容本节内容:一、泰勒一、泰勒 ( Taylor ) 级数级数 二、函数展开成幂级数二、函数展开成幂级数 函数展开成幂级数 第十一章 一、泰勒一、泰勒 ( Taylor ) 级数级数 )()(0 xfxf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中)(xRn( 在 x 与 x0 之间)称为拉格朗日余项拉格朗日余项 .10) 1()(! ) 1()(nnxxnf则在若函数0)(xxf在的某邻域内具有 n + 1 阶导数, 此式称为 f (x) 的
26、n 阶泰勒公式阶泰勒公式 ,该邻域内有 :)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)(为f (x) 的泰勒级数泰勒级数 . 则称当x0 = 0 时, 泰勒级数又称为麦克劳林级数麦克劳林级数 .1) 对此级数, 它的收敛域是什么 ?2) 在收敛域上 , 和函数是否为 f (x) ?待解决的问题 :若函数的某邻域内具有任意阶导数, 0)(xxf在定理定理1 .各阶导数, )(0 x则 f (x) 在该邻域内能展开成泰勒级数的充要条件是 f (x) 的泰勒公式中的余项满足:.0)(limxRnn设函数 f (x) 在点 x0 的某一邻域 内具有定理定理2
27、. 若 f (x) 能展成 x 的幂级数, 则这种展开式是唯一的 , 且与它的麦克劳林级数相同.二、函数展开成幂级数二、函数展开成幂级数 1. 直接展开法直接展开法由泰勒级数理论可知, 展开成幂级数的步函数)(xf第一步 求函数及其各阶导数在 x = 0 处的值 ;第二步 写出麦克劳林级数 , 并求出其收敛半径 R ; 第三步 判别在收敛区间(R, R) 内)(limxRnn是否为骤如下 :展开方法展开方法直接展开法 利用泰勒公式间接展开法 利用已知其级数展开式0. 的函数展开例例1. 将函数xexf)(展开成 x 的幂级数. 解解: ,)()(xnexf), 1 ,0(1)0()(nfn1其
28、收敛半径为 对任何有限数 x , 其余项满足 )(xRne! ) 1( n1nxxe! ) 1(1nxn故,!1!31!21132nxxnxxxenRlim!1n! ) 1(1nn0),(x( 在0与x 之间)x2!21x3!31xnxn!1故得级数 ! ) 12() 1(12nxnnxsinx!33x!55x!77xxcos1!22x!44x!66x! )2() 1(2nxnnmx)1 ( 1xm2!2) 1(xmmnxnnmmm!) 1() 1(当 m = 1 时x11,) 1(132nnxxxx),(x),(x) 1, 1(x) 1, 1(x2. 间接展开法间接展开法211x x11利用
29、一些已知的函数展开式及幂级数的运算性质, 例例4. 将函数展开成 x 的幂级数.解解: 因为nnxxx) 1(12)11(x把 x 换成2x211xnnxxx242) 1(1)11(x, 得将所给函数展开成 幂级数. 例例5. 将函数)1ln()(xxf展开成 x 的幂级数.解解: xxf11)()11() 1(0 xxnnn从 0 到 x 积分, 得xxxxnnnd) 1()1ln(00,1) 1(01nnnxn定义且连续, 区间为.11x利用此题可得11) 1(41312112lnnn11x11x上式右端的幂级数在 x 1 收敛 ,有在而1)1ln(xx所以展开式对 x 1 也是成立的,于
30、是收敛例例6. 将xsin展成4x解解: )(sinsin44xx)sin(cos)cos(sin4444xx)sin()cos(4421xx2132)4(!31)4(!21)4(121xxx)(x的幂级数. 2)4(!21x4)4(!41x1)4(x3)4(!31x5)4(!51x例例7. 将3412 xx展成 x1 的幂级数. 解解: )3)(1(13412xxxx)3(21)1 (21xx 14121x 4121x222) 1(xnnnx2) 1() 1( 81141x224) 1(xnnnx4) 1() 1(nnnnnx) 1(2121) 1(3220)31(x)21(x 18141x
31、1(06,一)将2( )2xf xxx展成关于x的幂级数内容小结内容小结1. 函数的幂级数展开法(1) 直接展开法 利用泰勒公式 ;(2) 间接展开法 利用幂级数的性质及已知展开2. 常用函数的幂级数展开式xe1),(x)1 (lnxx1, 1(xx2!21x,!1nxn221x331x441x11) 1(nnxn式的函数 .! ) 12() 1(12nxnnxsinx!33x!55x!77xxcos1!22x!44x!66x! )2() 1(2nxnnmx)1 ( 1xm2!2) 1(xmmnxnnmmm!) 1() 1(当 m = 1 时x11,) 1(132nnxxxx),(x),(x)
32、 1, 1(x) 1, 1(x第七节第七节一、三角级数及三角函数系的正交性一、三角级数及三角函数系的正交性 二、函数展开成傅里叶级数二、函数展开成傅里叶级数三、正弦级数和余弦级数三、正弦级数和余弦级数 第十一章 傅里叶级数傅里叶级数 一、三角级数及三角函数系的正交性一、三角级数及三角函数系的正交性简单的周期运动 :)sin(tAy(谐波函数)( A为振幅, 复杂的周期运动 :)sin(10nnntnAAytnAtnAnnnnsincoscossin令,200Aa,sinnnnAa,cosnnnAbxt得函数项级数)sincos(210 xnbxnaannk为角频率, 为初相 )(谐波迭加)称上
33、述形式的级数为三角级数.xxnkxnkd)cos()cos(21定理定理 1. 组成三角级数的函数系,1,cosx,sin x,2cos x,2sin x,cos,nx,sinnx证证:1xnxdcos1xnxdsin0 xnxk coscos)(nk xxnxkdcoscos00dsinsinxxnxk同理可证 :),2, 1(nxnkxnk)(cos)(cos21上在,正交 ,上的积分等于 0 .即其中任意两个不同的函数之积在0dsincosxxnxk)(nk 上的积分不等于 0 .,2d11xxxn dsin2xxn dcos2),2, 1(n,22cos1cos2xnxn22cos1s
34、in2xnxn且有 但是在三角函数系中两个相同的函数的乘积在 二、二、函数展开成傅里叶级数函数展开成傅里叶级数定理定理 2 . 设 f (x) 是周期为 2 的周期函数 , 且)sincos(2)(10nxbnxaaxfnnn右端级数可逐项积分, 则有), 1,0(dcos)(1nxnxxfan),2, 1(dsin)(1nxnxxfbn叶系数为系数的三角级数 称为的傅傅里里叶系数叶系数 ;由公式 确定的nnba ,)(xf)(xf的傅里里的傅傅里里叶级数叶级数 .称为函数)(xf以10sincos2)(nnnxnbxnaaxf), 1,0(dcos)(1nxnxxfan),2, 1(dsin
35、)(1nxnxxfbn定理定理3 (收敛定理收敛定理, 展开定理展开定理)设 f (x) 是周期为2的周期函数, 并满足狄利克雷狄利克雷( Dirichlet )条件条件:1) 在一个周期内连续或只有有限个第一类间断点;2) 在一个周期内只有有限个极值点, 则 f (x) 的傅里里叶级数收敛 , 且有10sincos2nnnnxbnxaa, )(xf,2)()(xfxf x 为间断点其中nnba ,为 f (x) 的傅里里叶系数 . x 为连续点注意注意: 函数展成傅里里叶级数的条件比展成幂级数的条件低得多.例例1. 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为),xxxf
36、0,10,1)(解解: 先求傅里里叶系数xnxxfandcos)(100dcos11dcos) 1(1xnxxnx),2,1,0(0n将 f (x) 展成傅里里叶级数. oyx11xnxxfbndsin)(100dsin11dsin) 1(1xnxxnx0cos1nnx0cos1nnxnncos12nn) 1(12,4n,0,5,3,1n当,6,4,2n当xxfsin 4)(x3sin31xkk) 12sin(121),2,0,(xx),2,0,(xx77sin x99sinx1) 根据收敛定理可知,时,级数收敛于02112) 傅氏级数的部分和逼近33sinsin4)(xxxf55sin xo
37、yx11说明说明:), 2, 1, 0(kkx当f (x) 的情况见右图.xoy例例2.上的表达式为),xxxxf0,00,)(将 f (x) 展成傅里里叶级数. 解解: xxfad)(100dcos1xxnxxnxxfandcos)(10d1xx0221x202cossin1nnxnnxx2cos1nn2332设 f (x) 是周期为 2 的周期函数 , 它在 ), 2, 1(nxnxxfbndsin)(1nn 1) 1(),2,1(k12 knkn2, 00dsin1xnxx)(xf4 cos x2xsinx2sin21 3sin 3cos xx 23231x4sin41 5sin 5co
38、s xx 252512cos1nnan,2) 12(2k),2,1,0,) 12(,(kkxx说明说明: 当) 12(kx时, 级数收敛于22)(0, )(xxf周期延拓)(xF傅里里叶展开,)(在xf上的傅里里叶级数定义在定义在 , 上的函数上的函数 f (x)的傅氏级数展开法的傅氏级数展开法), , )(xxf, )2(kxf其它例例3. 将函数xxxxxf0, 0,)(级数 .oyx则xxFad)(10 xxfd)(10d2xx0222xxnxxFandcos)(1xnxxfdcos)(10dcos2xnxx02cossin2nnxnnxx解解: 将 f (x)延拓成以 展成傅里里叶2为
39、周期的函数 F(x) , x3cos312na)1cos(22nn12 knkn2,0),2,1(k,2) 12(4kxnxxFbndsin)(1xnxxfdsin)(10)(xf24xcosx5cos512)(x利用此展式可求出几个特殊的级数的和.当 x = 0 时, f (0) = 0 , 得2222) 12(1513118n说明说明:42,421312242设,413121122222217151311,6141212222已知82122234131211又21213624822212248222三、正弦级数和余弦级数三、正弦级数和余弦级数1. 周期为2 的奇、偶函数的傅里叶级数定理定理
40、4 . 对周期为 2 的奇函数 f (x) , 其傅里里叶级数为周期为2的偶函数 f (x) , 其傅里里叶级数为余弦级数 ,),2,1,0( dcos)(20nxnxxfan),3,2,1( 0nbn),2,1,0( 0nan0),3,2,1(dsin)(2nxnxxfbn它的傅里里叶系数为正弦级数,它的傅里里叶系数为例例4. 设的表达式为 f (x)x ,将 f (x) 展成傅里里叶级数.是周期为2 的周期函数,它在上),)(xf解解: 若不计),2, 1,0() 12(kkx是则)(xf周期为 2 的奇函数, yxo0dsin)(2xnxxfbn),2,1,0(0nan),3,2,1(n0dsin2xnxx因此02sincos2nnxnnxxnncos21) 1(2nnn1根据收敛定理可得 f (x) 的正弦级数:)(xf,(x)3sin312sin21(sin2xxx12nnxnnsin) 1(1),1,0,) 12(kkxyxo级数的部分和 n2n3n4上在),逼近 f (x) 的情况见右图.n5例例5. 将周期函数tEtusin)(展成傅里里叶级数, 其中E 为正常数 .解解:)(tu2yxo2; ),2,1(0nbn0a0dsin2ttEE4ttntuan0dcos)(2tt ntE0dcossin20d) 1sin() 1sin(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国条码标签纸行业发展分析及投资价值预测研究报告
- 2025年幼儿园春季家庭健康宣教计划
- 2025年制造业品质提升工作计划
- 容器编排系统与微服务架构的安全性研究-洞察阐释
- 食品行业产品设计进度的有效监控措施
- 上海复旦五浦汇实验学校师资招聘笔试真题2024
- 烟草浙江公司考试真题2024
- 嘉兴市嘉善县急救站招聘笔试真题2024
- 生物基复合材料-洞察阐释
- 呼伦贝尔市洲里市融媒体中心人才引进笔试真题2024
- 知识图谱构建与应用试题及答案
- 湖北省武汉市2025届高三五月模拟训练英语试题(含答案无听力原文及音频)
- 基因编辑技术的临床应用与未来发展方向-洞察阐释
- 静脉输液不良反应应急预案与处理流程
- 《论亚太局势》课件
- 基于深度学习的日志异常检测技术研究
- 浙江省杭州市2024年中考英语真题(含答案)
- 2024年黑龙江省哈尔滨市中考数学试卷(附答案)
- 古河钻机HCR1200构造说明中文
- CT报告单--自己填
- DB4403∕T 199-2021 中医药健康文化宣教旅游示范基地评定规范
评论
0/150
提交评论