




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计算早期裂缝的宽度和最小配筋率6.1 早期混凝土的粘结应力和硬化的混凝土一样,粘结应力对混凝土裂缝宽度的计算和最小配筋率的确定非常重要。这些裂缝是由早期的变形引起的。关于早期钢筋混凝土粘结性能的文章很少。基于这个原因,调查了两种混凝土拌合物(高强混凝土和普通混凝土)粘结应力的发展。为了发现立方体抗压强度和抗拉拔强度的关系,在相同的龄期(8h,24h,30h,48h,28天)对二者进行了测试。8小时后,在普通混凝土和高强混凝土中都没有测到粘结应力。因为水化过程受到养护条件的影响,所以同一龄期,在半绝热养护和等温养护下,水化度不同。水化度和立方体抗压强度变化时粘结应力的发展,比时间变化时粘结应力的
2、发展提供的数据多。表6.1和6.2给出了水化度,立方体抗压强度变化时,不同的滑移值下(最大0.2mm),混凝土粘结应力的发展。较高的滑移值使裂缝宽度计算达到0.4mm。更宽的裂缝是不可接受的。表6.1 水化度,立方体抗压强度变化时,不同的滑移值下(最大0.2mm),普通混凝土粘结应力的发展普通混凝土: b(,)=0.720.54 6.1 fcm()图6.1为普通混凝土粘结应力与滑移的关系,滑移值最大为0.2mm。图中不同的形状代表不同的水化度。在表6.1中确定了每个滑移值的平均应力。平均应力可以通过公式6.1获得。图6.1 普通混凝土,相对粘结应力-滑移关系图6.2为高强混凝土粘结应力-滑移关
3、系,滑移值最大为0.2mm。在表6.2中确定了每个滑移值的平均应力。平均应力可以通过公式6.2获得。6.2 fcm()图6.2 高强混凝土,相对粘结应力-滑移关系公式6.1和6.2可以写成更一般的形式,即公式6.3,这是用于两种混凝土。幂函数(公式3.31)中的参数a和b取决于某确定水化度下的立方体抗压强度和临界水化度o。b=a* 3.31 b普通混凝土和高强混凝土:b(,)=4.80fcm()3.6 6.3 0注意:混凝土在钢筋加载的方向进行浇注。新浇混凝土的下沉和有孔砂浆的积聚削弱了混凝土(尤其是普通混凝土)的粘结力,导致粘结强度较低。然而,假设浇注方向对结果影响很小,允许高强混凝土的自我
4、压缩。6.2 早期裂缝宽度计算6.2.1 早期混凝土粘结应力-滑移关系与传统模型的比较可以用幂函数(公式3.31)计算粘结应力-滑移关系。裂缝宽度可以用公式3.35计算。不同的参数a和b可以描述硬化的混凝土的粘结应力-滑移关系。Knig and Tue (1996)认为用变形钢筋加固的混凝土中,a是0.31*fcm(28d),b是0.3。如果早期的立方体抗压强度fcm不进行调整,由于早期变形的影响,裂缝宽度就会太小(Cramon-Taubadel 2.3节)。因此,fcm(28d)要用fcm()代替(公式6.4),以解释早期立方体抗压强度的发展。b=a* 3.3111+bbcr=2cr=21+
5、bds8aEs1+nw2s,cr 3.35 b()=0.31fcm()0.3 6.4钢筋应力为200MPa时,用公式6.3和6.4计算裂缝宽度。水化度变化时,高强混凝土和普通混凝土的裂缝宽度发展见图6.3。对于普通混凝土,公式6.3和6.4的计算结果几乎相同。对于高强混凝土,公式6.3计算的裂缝宽度比公式6.4计算的裂缝宽度小,尤其是早期(1% 配筋率%Bergner提出了高强混凝土的设计概念,这个概念以计算裂缝宽度的试验和理论模型为基础。这个概念以第一条裂缝发生时刻实际荷载的预算值为基础(公式6.5)。因此,在折减系数kzt的帮助下,开裂时刻的抗拉强度fctm(tcr)已经确定了。这个折减系
6、数取决于混凝土的龄期。有效地横断面面积取决于结构构件的几何学,可以通过图6.4左确定出来。图6.4 混凝土横断面有效面积的确定,(左)试件的配筋率为1.34%,Atot/Aeq比率随时间的变化。为了计算第一次的开裂荷载FFC,需要确定钢筋横断面的转换面积Aeq(公式6.6)。Aeq取决于n=Es/Ec(t)。图6.4右,显示了随着时间的发展,钢筋的总横断面面积Atot与换算面积Aeq比值的变化。然而,为了简化计算,这个比值保持不变(Atot/Aeq=0.94)。Es Aeq=Ac+ E-1As 6.6 c第一次开裂荷载FFC确定后,要找到所需的钢筋面积As,以确保裂缝宽度不超过极限值(公式6.
7、7)。最后,裂缝宽度确定了。Bergner注意到这个概念是个相互影响的过程,因为不同的步骤相互影响,例如,配筋率越高,第一次开裂荷载越小,裂缝宽度越小。以下将Bergner的概念和作者的试验结果进行比较。 As=FFC/s,red 6.7 s,red 减少的钢筋应力Bergner在试验中发现,第一次开裂荷载随着配筋率的增加而降低。因此,引入了取决于配筋率的折减系数rein。rein可以估算出来。高强混凝土中,钢筋没有受到自收缩的影响。对于嵌入高强混凝土的钢筋,假设自收缩产生了额外的压应力,则rein,cal可以估算出来。折减系数的发展可根据附录C.2计算出来。图6.5右,显示了水化度变化时,r
8、ein,cal随着配筋率的变化而变化。开裂时刻的水化度在0.53-0.55的范围内变化。rein,cal变化不大,可从图6.5右看出来,当w=0.76%,rein,cal=0.92,当w=1.36%,rein,cal=0.85,当w=3.38%,rein,cal=0.67,这些值和Bergner在试验中发现的值(表6.5)很接近。Bergner的例子表6.5总结了配筋率不同时,计算的参数值,并根据公式6.5计算出第一次开裂荷载。从表5.3获得:抗拉强度fctm(28d)=0.9fctm,sp(28d)。第一次贯穿裂缝发生时,计算的开裂荷载FFC和试验中测量的开裂荷载FFCX进行了比较。大部分情
9、况下,只有一个试验的配筋率和钢筋布置是确定的。图中醒目的黑体是三个试验的平均值。比较公式6.5计算的开裂荷载值FFC和第一条贯穿裂缝发生时测量的荷载,发现 Bergner的估算值比实际测量值高了13%。这就导致公式6.7计算的配筋率比实际需要的配筋多了13%。从表6.5可以看出,在参数kzt的帮助下,混凝土抗拉强度可以估算出来。Bergner的折减系数rein可以用rein,cal近似表示出来,rein,cal根据附录C.2计算出来。然而,在折减系数计算中,没有考虑贯穿裂缝产生前混凝土刚度的损失。这可能是Bergner的第一次开裂荷载比作者试验中的值高的原因。6.3.3 根据Paas确定的最小
10、配筋率Paas(1998)用试验研究了浇筑在基础板上的墙的开裂性能。他将钢筋混凝土墙或素混凝土墙浇注在刚度可选择的条形基础或板形基础上,见图2.5。目的是优化这种结构类型的配筋率。通过分析早期开裂的影响,成功预测了结构构件的温度,材料性能,和裂缝形成过程,并提供了最小配筋率的设计图。图2.5 根据Paas得出的配筋对墙体变形性能的影响图6.6显示了无筋墙和有筋墙的理论模型,这些墙固定在地面上,以限制移动和转动。图6.6下为开裂时的定性变形状态。由于下面受到完全约束,墙只有顶端边缘才能变形。因此,无筋水平墙条的水平变形we(x,tcr)取决于开裂时间tcr和开裂位置x。通过引入虚拟长度le和长度
11、变化值0(x,tcr),水平变形we(x,tcr)能根据公式6.8计算出来。系数e表明只考虑裂缝的一面。we(x,tcr)=0(x,tcr)lc(x,tcr) 6.8虚拟长度le取决于墙的高度H(公式6.9)。几何参数ke(x,tcr)用FE计算。在简化边界条件的假设下,为不同的墙基土系统提供了图解(图6.7)。 le(x,tcr)=ke(x,tcr)H 6.9图6.6 受地面约束的无筋墙的模型(上)有筋墙的模型(下)图6.7 墙基土系统的横断面和图解(Paas,1998)在配筋的墙条中,钢筋模仿弹簧进行计算(图6.8)。无筋墙条的裂缝宽度w(x,tcr)减去v(x,tcr)(公式6.10)将
12、得到新的裂缝宽度ws(x,tcr)(公式6.11)。Paas认为钢筋引起的混凝土变形cc,e(公式6.13)能通过裂缝一端的虚拟长度le计算出来。弹力可以由公式6.14计算出。图6.8 Paas(1998)用一个水平墙条作为弹力模型ve(x,tcr)=we(x,tcr)-ws,e(x,tcr) 6.10 ws,e(x,tcr)=Fs 弹力cs 弹性刚度l0(x) 裂缝形成时的虚拟转移长度 Fs(x,tcr)Fs(x,tcr)l0(x) 6.11 =cs,c(x,tcr)2EsAs(x)l0(x)=25+0.1ds(x) 6.12 (x)(x) 局部混凝土比率(x) =as/ac,eff,ac,
13、eff=2.5cs(图6.8) cc,e(x,tcr)=Ec(x,tcr)Ac(x) 6.13 le(x,tcr)Fs(x,tcr)=ve(x,tcr)cc,e(x,tcr) 6.14 Fs(x,tcr)=0(x,tcr)le(x,tcr)-ws,e(x,tcr)Eb(x,tcr)Ac 6.15 le(x,tcr)ws,c(x,tcr)=0(x,tcr)le(x,tcr)ssecr1+Ec(x,tcr)Ac(x)l0(x) 6.16ws(x,tcr)=ws,el(x,tcr)+ws,er(x,tcr) 6.17如果ve(公式6.10)和cce(公式6.13)代入公式6.14,则可得到公式6.1
14、5。一边的裂缝宽度ws,e(x,tcr)可用公式6.11计算出来,也可写成公式6.16。钢筋混凝土试件总的裂缝宽度ws(x,tcr)是左边裂缝宽度ws,el(x,tcr)和右边裂缝宽度ws,er(x,tcr)之和。将l0(公式6.12)代入公式6.16可计算出横断面的一半的最小配筋As。公式6.18用来解决图表中的最小配筋率ascm2/m(附录C.22)。为了使用这些图表,需要知道下面的参数:墙条的混凝土横断面面积ac,钢筋直径ds,混凝土保护层c。两个输入参数I1和I2需要根据公式6.19和6.20计算。ws,e(x,tcr)=0(x,tcr)le(x,tcr)2EsAs(x)le(x,tc
15、r)1+0.125ds(x)cs(x)Ec(x,tcr)Ac(x) 12.5+ A(x)s 6.18I1=Ec(x,tcr)acwe(x,tcr) -1 6.19 EsIcwscI2=dsc 6.20 Paas的例子为了测试这个计算过程,在两个不同的例子中计算了钢筋的作用。Paas在例A中计算的最小配筋率可以作为一个参考开裂时刻的应力可从附录B.2中获得。混凝土的弹模用公式6.21确定。Ec,eff=c(tcr)c,stress(tcr) 6.21内应力变形c,stress可在附录B.2中进行计算。在例B中,开裂时刻和第一个例子相同,没有考虑钢筋的作用。在例C中,开裂时刻推迟了。为了考虑钢筋的
16、应变增强效应,裂缝宽度要除以1.85。这就意味着裂缝宽度we的85%是根据表6.6得到的。在两个例子中,计算的最小配筋的减少是9%。表6.6根据Paas得到的,考虑和不考虑钢筋的应变增强效应引起微裂缝时,最小配筋的计算6.3.4 2nd Stichtse Brug 最小配筋的计算与试验结果的比较在早期项目中,Gall(1997)计算了自由悬臂柱受到收缩和温度作用引起的裂缝宽度和所需配筋,这个自由悬臂柱是2nd Stichtse Brug现场浇注的。为了证实他的计算,他把他的结果和现场测量的裂缝宽度进行了比较。作者的试验结果和Gall的工作是合理的,他们研究的高强混凝土拌合物是相同的。图6.9为
17、Gall计算得到的混凝土应力的发展。先前浇注的部分对变形的约束作用占50%,已经用DIANA进行了计算(图6.9,右,Van der Veen et.al.,1996)。经计算,开裂时刻tcr的平均值是58小时后。在实际情况中,开裂时刻在5271小时之间。尽管计算值和实际情况差异不大,但在允许的温度和应变差异中,几个小时的差异是一个很大的差异。表6.7 Gall计算的参数图6.9 Gall计算的应力发展(1997)Van der Veen et.al.计算的新浇注部分的变形约束(1996)表6.7总结了Gall计算的参数,这些参数用来确定裂缝宽度和裂缝数量。Gall用公式3.35计算裂缝宽度,
18、用公式6.22计算裂缝数量。假设引起主要变形的第一条裂缝产生后,温度降低T。因此,不考虑自收缩。ncrack=TcTlcrack 6.22 wcrT 开裂后温度降低值cT 混凝土的热膨胀系数lcrack 裂缝形成时,考虑的长度wcr 平均裂缝宽度分析配筋率为1.25%,直径20120,Gall计算的平均裂缝宽度为0.14mm,最大裂缝宽度是0.18mm。经过测量得到的最大裂缝宽度为0.17mm,和计算值相比,偏差很小。这些值之间具有很好的一致性。和Gall使用的参数相同,用公式6.3计算得到的平均裂缝宽度是0.12mm,最大裂缝宽度是1.3*0.12mm=0.16mm(公式3.36)。略的近似
19、,尤其是如果开裂变形的状态没有终止。没有考虑裂缝之间的混凝土应变。另一个原因可能是裂缝分配了钢筋的作用,看不见表面的某些计算裂缝。在实际中,如何量化细的裂缝仍是一个问题。将计算的裂缝数量和数的裂缝数量进行比较(11和7,13和7),可以发现,翼板的应变能力比计算的大1.571.86倍。这个范围和温度应力试验机试验中(5.6.3节)发现的钢筋对开裂性能的影响范围是一致的。可以得出结论:温度应力试验机试验中(5.6.3节)得到的结果和现场观察的结果很接近。6.4 讨论裂缝宽度的计算早期粘结力的发展以早期混凝土获得的数据为基础,水化度变化时,早期混凝土粘结应力-滑移关系已经用公式表示出来。运用Noakowski(1978)的分析方法计算裂缝宽度和最小配筋率。拔出试验的结果能够很好的表达适用于普通混凝土和高强混凝土的公式。在普通混凝土中计算的理论裂缝宽度和以早期试验的公式为基础计算得到的裂缝宽度几乎相同。然而,对于高强混凝土,较小的裂缝宽度可以计算出来。这看起来合理,因为高强混凝土和钢筋之间的粘结力比普通混凝土好。为了证明作者的公式,用不同类型的混凝土做了更多试验。最小配筋率的确定以Noakowski(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年体育休闲广场体育活动策划评估报告
- 药品设备设施管理制度
- 药品领用库存管理制度
- 药店各项卫生管理制度
- 药店灌装中药管理制度
- 菜鸟渠道销售管理制度
- 设备主办培训管理制度
- 设备基础安全管理制度
- 设备工模夹具管理制度
- 设备材料使用管理制度
- 2025至2030年中国航空发动机维修行业市场运营态势及发展前景研判报告
- 低压电工证考试试题及答案
- 2025深圳语文中考作文(10篇)
- 2025年大学生学术研究洞察报告
- 2025年广东中考化学模拟演练化学试卷B(含答案)
- 2025春学期三年级语文下册教学工作总结 (三篇)
- 2025聊城市辅警考试试卷真题
- 2025年全国二卷数学高考真题文字版
- 成都香城悦动置业有限公司招聘考试真题2024
- 2025年成都市初中学业水平考试道德与法治试题(含答案)
- 浙江省宁波2025年八年级下学期期末数学试题及答案
评论
0/150
提交评论