



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、加速度及匀变速直线运动典型例题例 1下列说法中正确的是A. 物体运动的速度越大,加速度也一定越大B.物体的加速度越大,它的速度一定越大C.加速度就是“加出来的速度”D.加速度反映速度变化的快慢,与速度无关分析 物体运动的速度很大,若速度的变化很小或保持不变(匀速运动),其加速度不一定大(匀速运动中的加速度等于零) .物体的加速度大, 表示速度变化得快, 即单位时间内速度变化量大, 但速度的数值未必大 .比如婴儿,单位时间(比如 3 个月)身长的变化量大,但绝对身高并不高。“加出来的速度”是指 vt-v0(或 v),其单位还是 m/s.加速度是“加出来的速度”与发生这段变化时间的比值,可以理解为
2、“数值上等于每秒内加出来的速度” .加速度的表达式中有速度 v0、v1,但加速度却与速度完全无关速度很大时,加速度可以很小甚至为零;速度很小时,加速度也可以很大;速度方向向东,加速度的方向可以向西 .答D.说明 要注意分清速度、速度变化的大小、速度变化的快慢三者不同的含义,可以跟小孩的身高、身高的变化量、身高变化的快慢作一类比 .例2物体作匀加速直线运动,已知加速度为2m/s2,那么在任意1s 内A. 物体的末速度一定等于初速度的2 倍B.物体的未速度一定比初速度大2m/sC.物体的初速度一定比前1s 内的末速度大2m/sD.物体的末速度一定比前1s 内的初速度大2m/s分析 在匀加速直线运动
3、中, 加速度为 2m/s2,表示每秒内速度变化 (增加)2m/s,即末速度比初速度大 2m/s,并不表示末速度一定是初速度的 2 倍.在任意 1s 内,物体的初速度就是前 1s 的末速度,而其末速度相对于前 1s 的初速度已经过 2s,当 a=2m/s2 时,应为 4m/s.答B.说明 研究物体的运动时,必须分清时间、时刻、几秒内、第几秒内、某秒初、某秒末等概念 .如图所示(以物体开始运动时记为 t=0)。例 3计算下列物体的加速度:( 1)一辆汽车从车站出发作匀加速运动,经10s 速度达到 108km/h.( 2)高速列车过桥后沿平直铁路匀加速行驶,经3min 速度从 54km/h 提高到1
4、80km/h.( 3)沿光滑水平地面以 10m/s 运动的小球,撞墙后以原速大小反弹,与墙壁接触时间为 0.2s.分析 由题中已知条件,统一单位、规定正方向后,根据加速度公式,即可算出加速度 .解 规定以初速方向为正方向,则对汽车 v0=0,vt=108km/h=30m/s,t=10s,对列车 v0=54km/h=15m/s, vt=180km/h=50m/s,t=3min=180s.对小球 v0=10m/s,vt=-10m/s,t=0.2s,说明 由题中可以看出,运动速度大、速度变化量大,其加速度都不一定大,尤需注意,必须考虑速度的方向性 .计算结果 a3=-100m/s2,表示小球在撞墙过
5、程中的加速度方向与初速方向相反,是沿着墙面向外的,所以使小球先减速至零,然后再加速反弹出去.速度和加速度都是矢量,在一维运动中(即沿直线运动),当规定正方向后,可以转化为用正、负表示的代数量 .应该注意:物体的运动是客观的,正方向的规定是人为的 .只有相对于规定的正方向,速度与加速度的正、负才有意义 .。速度与加速度的量值才真正反映了运动的快慢与速度变化的快慢 .所以, vA =-5m/s,vB=-2m/s,应该是物体 A 运动得快;同理, aA =-5m/s2,aB =-2m/s2,也应该是物体 A 的速度变化得快(即每经过 1s 速度减少得多),不能按数学意义认为vA 比 vB 小, aA
6、 比 aB 小.例 4一个做匀变速直线运动的物体连续通过两段长 s 的位移所用时间分别为 t1、t2,则该物体的加速度为多少 ?分析 根据匀变速运动的物体在某段时间内的平均速度等于中点时刻瞬时速度的关系,结合加速度的定义 .即可算出加速度 .解 物体在这两段位移的平均速度分别为它们分别等于通过这两段位移所用的时间中点的瞬时速度.由于两个时间可知:说明 由计算结果的表达式可知:当 t1t2 时, a 0,表示物体作匀加速运动,通过相等位移所用时间越来越短;当 t1 t2 时, a0,表示物体作匀减速运动,通过相等位移所用时间越来越长 .例 5图 1 表示一个质点运动的 vt 图,试求出该质点在
7、3s 末、 5s 末和 8s 末的速度 .分析 利用 v-t 图求速度有两种方法:( 1)直接从图上找出所求时刻对应的纵坐标,即得对应的速度值,再根据速度的正负可知此刻的方向;( 2)根据图线求出加速度,利用速度公式算出所求时刻的速度 .下面用计算法求解 .解 质点的运动分为三个阶段:AB 段( 04s)质点作初速 v0=6m/s 的匀加速运动,由 4s 内的速度变化得加速度:所以 3s 末的速度为:v3=v0 at=6m/s( 1.5× 3) m/s=10.5m/s方向与初速相同 .BC 段( 46s)质点以 4s 末的速度( v4=12m/s)作匀速直线运动,所以 5s 末的速度
8、:v5=12m/s方向与初速相同 .CD 段(612s)质点以 6s 末的速度(即匀速运动的速度) 为初速作匀减速运动 .由 6s 内的速度变化得加速度:因所求的 8s 末是减速运动开始后经时间t'=2s 的时刻,所以 8s 末的速度为:其方向也与初速相同 .说明 匀变速运动速度公式的普遍表达式是:vt=v0+at使用中应注意不同运动阶段的初速和对应的时间 .在匀减速运动中,写成 vt=v0-at 后,加速度 a 只需取绝对值代入 .速度图象的斜率反映了匀变速直线运动的加速度.如图所示,其斜率式中夹角 从 t 轴起以逆时针转向为正,顺时针转向为负 .如图 3 中与图线 1,2对应的质点
9、作匀加速运动,与图线 3 对应的质点作匀减速运动 .图线越陡,表示加速度越大,故 a1a2.例 6一个质点作初速为零的匀加速运动,试求它在s2, s3, 之比和在第1s,第 2s,第 3s, 内的位移1s,2s,3s, 内的位移 s1,s,s ,s , 之比各为多少?分析 初速为零的匀加速运动的位移公式为:其位移与时间的平方成正比,因此,经相同时间通过的位移越来越大.解 由初速为零的匀加速运动的位移公式得: s s s=135说明 这两个比例关系,是初速为零的匀加速运动位移的重要特征,更一般的情况可表示为: 在初速为零的匀加速运动中, 从 t=0 开始,在 1 段、2 段、3 段 时间内的位移
10、之比等于 1222 32 ;在第 1 段、第 2 段、第 3 段 时间内的位移之比等于从 1 开始的连续奇数比,即等于 1 3 5 (图 1) .2.利用速度图线很容易找出例 6 中的位移之比 .如图 2 所示,从 t=0 开始,在 t 轴上取相等的时间间隔, 并从等分点作平行于速度图线的斜线, 把图线下方的面积分成许多相同的小三角形 .于是,立即可得:从 t=0 起,在 t、2t、 3t、 内位移之比为s1 s2 s3=1 4 9在第 1 个 t、第 2 个 t、第 3 个 t、 内位移之比为ss s =135 例 7一辆沿平直路面行驶的汽车,速度为36km/h.刹车后获得加速度的大小是4m
11、/s2,求:( 1)刹车后 3s 末的速度;( 2)从开始刹车至停止,滑行一半距离时的速度 .分析 汽车刹车后作匀减速滑行,其初速度 v0=36km/h=10m/s,vt=0,加速度a=-4m/s2.设刹车后滑行 ts 停止,滑行距离为 S,其运动示意图如图所示 .解 (1)由速度公式 vt=v0+at 得滑行时间:即刹车后经 2.5s 即停止,所以 3s 末的速度为零 .( 2)由位移公式得滑行距离.即设滑行一半距离至B 点时的速度为 vB ,由推论说明( 1)不能直接把 t=3s 代入速度公式计算速度, 因为实际滑行时间只有2.5s.凡刹车滑行一类问题,必须先确定实际的滑行时间(或位移);
12、( 2)滑行一半距离时的速度不等于滑行过程中的平均速度 .例 8一物体作匀变速直线运动,某时刻速度大小为变为 v2=10m/s,在这 1s 内物体的加速度大小 v1=4m/s, 1s 后的速度大小A. 可能小于4m/s2 B.可能等于6m/s2C.一定等于6m/s2 D.可能大于10m/s2当 v2 与 v1 同向时,得加速度当 v2 与 v1 反向时,得加速度答B,D.说明 必须注意速度与加速度的矢量性,不能认为v2 一定与 v1 同向 .对应于题中 a1、a2 两情况,其 vt 图见图所示 .由图可知:当 v2 与 v1 同向时,其平均速度和 1s 内的位移分别为当 v2 与 v1 反向时
13、,其平均速度和1s 内的位移分别为例 9摩托车的最大车速 vm=25m/s,要在 t=2min 内沿着一条笔直的公路追上在它前面 s0=1000m 处正以 v=15m/s 行驶的汽车,必须以多大的加速度起驶?分析 这里有两个研究对象:汽车和摩托车, .汽车始终做匀速直线运动,摩托车起动后先作匀加速运动, 当车速达到其最大值前若还未追上汽车, 以后便改以最大车速 vm 做匀速运动 .追上时,两车经历的时间相等 .其运动过程如图 1 所示 .解 规定车行方向为正方向,则汽车在t=2min 内的位移s1vt 15×120m=1800m,摩托车追上汽车应有的位移s2=s0+s1=1000m+
14、1800m=2800m.设摩托车起动后的加速度为 a,加速运动的时间为 t',改作以最大车速 vm 匀速追赶的时间为 t-t',则说明 1.不能由摩托车应有的位移s2=2800m 直接按匀加速运动公式得出加速度因为摩托车有一极限车速,在这2min 内并不是始终做加速运动的.2.本题的 v t 图如图 2 所示 .设加速运动的时间为 t',则由图线所对应的面积很容易列出关系式所以解题中应注意借助图线的形象思维.例 10一列货车以 v1=28.8km/h 的速度在平直铁路上运行 .由于调度事故, 在大雾中后面相距 s0=600m 处有一列客车以 v2=72km/h 的速度在
15、同一铁轨上驶来 .客车司机发现货车后立即紧急制动, 为不使两车相撞, 客车的制动加速度至少多大?设货车速度不变 .分析 这里有两个研究对象:货车与客车.货车始终以 v1 做匀速直线运动,客车以 v2 为初速作匀减速运动 .不致相撞时,客车和货车应同时满足位移条件 (s 客 s 货)和速度条件( v 客 v 货).如图 1.解 以车行方向为正方向, 设客车制动后的加速度大小为 a2.由上述不相撞的条件得当制动加速度取最小值时,两个不等式可改为等式 .由( 2)式得客车速度减小到等于货车速度的时间代入( 1)式,得整理后得以 v1=28.8km/h=8m/s,v2=72km/h=20m/s,s0=
16、600m 代入得说明 本题也可用 v t 图求解 .如图 2 所示,画出两车的速度图线 .刚好相遇不相撞时,其中画有斜线的三角形面积数值上应等于 s0,即上面的计算都是以地面为参照物的 .如果改以货车为参照物,即站在货车上看后方的客车,客车制动后相对于它以初速( v2-v1)、加速度 a2 向它驶来,不相撞时,经位移 s0 后恰好静止(即与货车相对静止) .于必须注意,相遇(追及)和相遇不相撞两者的物理条件不同 .相遇时只需满足一个位移条件(例 2);相遇不相撞还需同时满足速度条件,即后车的速度应不大于前车的速度,临界情况下两车速度相等 .例 11如图所示,一小滑块 m 从静止开始沿光滑斜面由
17、 A 滑到 C,经历的时间为 t1,如果改由光滑曲面滑到 C,则经历的时间为 t2,关于 t1 和 t2 的大小A.t1 t2B.t1=t2C.t1 t2D. 已知条件不足,不能判定分析 光滑曲面 ADC 是任意的曲面,就题目给出的已知条件,是无法利用运动学公式求出 t1、t2 比较其大小的,但可利用图象法来分析。滑块从 A 到 C 沿光滑斜面下滑,做初速为零的匀加速直线运动, 沿光滑曲面 ADC下滑时,在 AD 段加速度大于沿斜面下滑的加速度,在 DC 段又小于斜面上的加速度,但从 A 到 C,它们的位移大小是相同的,且到 C 点的速率相等。做出v-t图来,定性地讨论解答 正确答案为 A说明
18、 本题是一例涉及复杂运动过程的物理量的定性比较,由于物理过程复杂,难以写出其定量表达式, 而题目也没有要求一定要写出二者的定量表达式, 只要求比较两个物理量的大小,在这种情况下,用几何方法(图象)来定性或半定量分析,往往有奇效。 解决物理问题的过程是一种创造性思维过程, 如能针对问题特点灵活、巧妙地运用所学知识和技能, 创造性地解决问题, 方能称得上学习的高境界。例 12如图 1 所示,在平直公路上一汽车的速度为 15m/s,从某时刻开始刹车,在阻力作用下,汽车以 2m/s2 的加速度做匀减速直线运动,问刹车后第 10s 末车离刹车点多远?分析 汽车做匀减速运动的加速度是由于受滑动摩擦力产生的
19、, 当汽车刹车,vt=0时,汽车静止,不再受摩擦力,因此 a=0,汽车不能反向做加速运动,将一直静止下去。对于这类汽车刹车问题, 解题的关键是要知道汽车刹住所需要的实际时间, 在这段时间内汽车做匀减速运动,超过这段时间,汽车已处于静止。解 方法一: 根据 vt=0 计算刹车需要的时间tvt=v0-at0=15-2t,t=7.5s计算表明 t 10s 因此 2.5s 车是停着的,所以刹车距离s 为方法二:作 v-t 图象(图 2 所示),可得刹车时间 t=7.5s,刹车距离 s 可用图中三角形面积表述,如图 2 所示。说明 由此可见,要正确地解答物理问题不能乱套公式,必须认真审清题,理解题目中真实物理图景,在此基础上选择合适的物理公式才行。例 13A 、B 两车在一条水平直线上同向匀速行驶, B 车在前,车速 v2=10m/s; A 车在后,车速 72km/h,当 A 和 B 相距 100m 时,A 车用恒定的加速度 a 减速,求: a=?A 车与 B 车相遇时不相撞。分析 A 车追上 B 车,相遇而不相撞的条件是 A、 B 两车速度相等,从这个条件出发,作物理图景表述运动过程。解 方法一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江宁波市卫生健康委部分直属事业单位公开招聘高层次人才69人(第二批)模拟试卷附答案详解(典型题)
- 2025江苏盐城市妇幼保健院招聘编外专业技术人员16人考前自测高频考点模拟试题(含答案详解)
- 2025湖南娄底冷水江市城发实业有限公司公开招聘实验室试验员的考前自测高频考点模拟试题及答案详解(必刷)
- 2025黑龙江双鸭山市宝清县招聘就业见习人员917人模拟试卷及1套参考答案详解
- 2025湖北恩施州巴东县信陵镇人民政府公益性岗位人员招聘8人考前自测高频考点模拟试题及答案详解(易错题)
- 2025年中国安能集团置业有限公司招聘12人笔试题库历年考点版附带答案详解
- 2025江西吉水县某行政单位招聘4人模拟试卷有完整答案详解
- 2025年蚌埠市第二人民医院招聘5人模拟试卷及1套完整答案详解
- 2025年“才聚齐鲁成就未来”山东高速集团有限公司社会招聘224人笔试题库历年考点版附带答案详解
- 2025贵州织金翔盛工业发展有限公司招聘考前自测高频考点模拟试题及答案详解(夺冠)
- NB-T+35056-2015-水电站压力钢管设计规范
- 2024年垃圾分类知识考试题库及答案
- 中国法律史-第一次平时作业-国开-参考资料
- 平行四边形的面积集体备课发言稿
- 大学美育(第二版) 课件 第八单元:建筑艺术
- 思想政治教育专业大学生职业生涯规划书
- 医院科研经费管理办法
- 2023年广州海洋地质调查局招聘社会在职人员高频考点题库(共500题含答案解析)模拟练习试卷
- 运用PDCA循环降低住院患者雾化吸入的不规范率品管圈成果汇报
- 感触最深的一件事七年级作文大全600字
- 中建二局“大商务”管理实施方案20200713(终稿)
评论
0/150
提交评论