版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2一、问题的提出一、问题的提出把定积分的元素法推广到二重积分的应用中把定积分的元素法推广到二重积分的应用中. . d d dyxf),( dyxf),(),(yx 若要计算的某个量若要计算的某个量U对于闭区域对于闭区域D具有可加性具有可加性(即当闭区域即当闭区域D分成许多小闭区域时,所求量分成许多小闭区域时,所求量U相应相应地分成许多部分量,且地分成许多部分量,且U等于部分量之和等于部分量之和),并且,并且在闭区域在闭区域D内任取一个直径很小的闭区域内任取一个直径很小的闭区域 时,时,相应地部分量可近似地表示为相应地部分量可近似地表示为 的形式,的形式,其中其中 在在 内这个内这个 称为所求量
2、称为所求量U的的元素元素,记为,记为 ,所求量的积分表达式为所求量的积分表达式为 DdyxfU ),(dU3实例实例一颗地球的同步轨道通讯一颗地球的同步轨道通讯卫星的轨道位于地球的赤道平面卫星的轨道位于地球的赤道平面内,且可近似认为是圆轨道通内,且可近似认为是圆轨道通讯卫星运行的角速率与地球自转讯卫星运行的角速率与地球自转的角速率相同,即人们看到它在的角速率相同,即人们看到它在天空不动若地球半径取为天空不动若地球半径取为R,问卫星距地面的高度问卫星距地面的高度h应为多少?应为多少?通讯卫星的覆盖面积是多大?通讯卫星的覆盖面积是多大?二、曲面的面积二、曲面的面积卫星卫星hoxz4设曲面的方程为:
3、设曲面的方程为:),(yxfz ,Dxoy 面面上上的的投投影影区区域域为为在在,Dd 设设小小区区域域,),( dyx 点点.),(,(的的切切平平面面上上过过为为yxfyxMS .dsdAdAdsszd 则则有有,为为;截截切切平平面面为为柱柱面面,截截曲曲面面轴轴的的小小于于边边界界为为准准线线,母母线线平平行行以以如图,如图, d),(yxMdAxyzs o 5,面面上上的的投投影影在在为为xoydAd ,cos dAd,11cos22yxff dffdAyx221,122 DyxdffA 曲面曲面S的面积元素的面积元素曲面面积公式为:曲面面积公式为:dxdyAxyDyzxz 22)(
4、)(16设曲面的方程为:设曲面的方程为:),(xzhy 曲面面积公式为:曲面面积公式为: .122dzdxAzxDxyzy 设曲面的方程为:设曲面的方程为:),(zygx 曲面面积公式为:曲面面积公式为: ;122dydzAyzDzxyx 同理可得同理可得7例例 1 1 求求球球面面2222azyx ,含含在在圆圆柱柱体体axyx 22内内部部的的那那部部分分面面积积.由由对对称称性性知知14AA , 1D:axyx 22 曲面方程曲面方程 222yxaz ,于于是是 221yzxz ,222yxaa 解解)0,( yx8面面积积dxdyzzADyx 12214 12224Ddxdyyxaa
5、cos0220142ardrrada.4222aa 9例例 2 2 求由曲面求由曲面azyx 22和和222yxaz )0( a所围立体的表面积所围立体的表面积.解解解方程组解方程组,22222 yxazazyx得两曲面的交线为圆周得两曲面的交线为圆周,222 azayx在在 平面上的投影域为平面上的投影域为xy,:222ayxDxy 得得由由)(122yxaz ,2axzx ,2ayzy 10 221yxzz22221 ayax,441222yxaa 知知由由222yxaz 221yxzz, 2dxdyyxaaSxyD 222441故故dxdyxyD 2rdrraada 022204122
6、a ).15526(62 a11),(yx 设设xoy平面上有平面上有n个质点,它们分别位于个质点,它们分别位于),(11yx,),(22yx,,),(nnyx处,质量分别处,质量分别为为nmmm,21则该质点系的则该质点系的重心重心的坐标为的坐标为 niiniiiymxmMMx11, niiniiixmymMMy11三、平面薄片的重心三、平面薄片的重心12当薄片是均匀的,重心称为当薄片是均匀的,重心称为形心形心.,1 DxdAx .1 DydAy DdA 其中其中,),(),( DDdyxdyxxx .),(),( DDdyxdyxyy 由元素法由元素法 设设有有一一平平面面薄薄片片,占占有
7、有xoy面面上上的的闭闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx ,假假定定),(yx 在在D上上连连续续,平平面面薄薄片片的的重重心心13例例 3 3 设设平平面面薄薄板板由由 )cos1()sin(tayttax,)20( t与与x轴轴围围成成,它它的的面面密密度度1 ,求求形形心心坐坐标标解解先先求求区区域域 D的的面面积积 A, 20t, ax 20 adxxyA20)( 20)sin()cos1(ttadta 2022)cos1(dtta.32a Da 2a )(xy14 所所以以形形心心在在ax 上上,即即 ax , DydxdyAy1 )(0201xyay
8、dydxA adxxya2022)(61 203cos16dtta.65 所所求求形形心心坐坐标标为为 ),(65 a.由由于于区区域域关关于于直直线线ax 对对称称 ,15 设设xoy平平面面上上有有n个个质质点点,它它们们分分别别位位于于),(11yx,),(22yx,,),(nnyx处处,质质量量分分别别为为nmmm,21则则该该质质点点系系对对于于x轴轴和和y轴轴的的转转动动惯惯量量依依次次为为 niiixymI12, niiiyxmI12.四、平面薄片的转动惯量四、平面薄片的转动惯量16,),(2 DxdyxyI .),(2 DydyxxI 设设有有一一平平面面薄薄片片,占占有有xo
9、y面面上上的的闭闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx ,假假定定),(yx 在在D上上连连续续,平平面面薄薄片片对对于于x轴轴和和y轴轴的的转转动动惯惯量量为为薄片对于薄片对于 轴的转动惯量轴的转动惯量x薄片对于薄片对于 轴的转动惯量轴的转动惯量y17例例 4 4 设设一一均均匀匀的的直直角角三三角角形形薄薄板板,两两直直角角边边长长分分别别 为为a、b,求求这这三三角角形形对对其其中中任任一一直直角角边边的的转转动动惯惯量量.解解设三角形的两直角边分别在设三角形的两直角边分别在x轴和轴和y轴上,如图轴上,如图aboyx对对y轴轴的的转转动动惯惯量量为为,2dxd
10、yxIDy 18 babydxxdy0)1(02 .1213 ba 同同理理:对对x轴轴的的转转动动惯惯量量为为dxdyyIDx 2 .1213 ab 19例例 5 5 已知均匀矩形板已知均匀矩形板(面密度为常数(面密度为常数)的长)的长和宽分别为和宽分别为b和和h,计算此矩形板对于通过其形,计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量心且分别与一边平行的两轴的转动惯量.解解先求形心先求形心,1 DxdxdyAx.1 DydxdyAy 建建立立坐坐标标系系如如图图oyx, hbA 区域面积区域面积 因因为为矩矩形形板板均均匀匀,由由对对称称性性知知形形心心坐坐标标2bx ,2hy
11、 .hb20将坐标系平移如图将坐标系平移如图oyxhbuvo 对对u轴轴的的转转动动惯惯量量 DududvvI2 22222hhbbdudvv .123 bh 对对v轴轴的的转转动动惯惯量量 DvdudvuI2 .123 hb 21薄片对薄片对轴上单位质点的引力轴上单位质点的引力z 设设有有一一平平面面薄薄片片,占占有有xoy面面上上的的闭闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx ,假假定定),(yx 在在D上上连连续续,计计算算该该平平面面薄薄片片对对位位于于 z轴轴上上的的点点), 0 , 0(0aM处处的的单单位位质质点点的的引引力力)0( a,zyxFFFF
12、,)(),(23222 dayxxyxfFDx ,)(),(23222 dayxyyxfFDy .)(),(23222 dayxyxafFDz 为引力常数为引力常数f五、平面薄片对质点的引力五、平面薄片对质点的引力22例例6 6 求求面面密密度度为为常常量量、半半径径为为R的的均均匀匀圆圆形形薄薄片片:222Ryx ,0 z对对位位于于 z轴轴上上的的点点), 0 , 0(0aM处处的的单单位位质质点点的的引引力力)0( a解解由积分区域的对称性知由积分区域的对称性知, 0 yxFF dayxyxafFDz 23)(),(222 dayxafD 23)(1222oyzxF23drrardafR
13、 0222023)(1.11222 aaRfa所求引力为所求引力为.112, 0, 022 aaRfa24几何应用:曲面的面积几何应用:曲面的面积物理应用:重心、转动惯量、物理应用:重心、转动惯量、对质点的引力对质点的引力(注意审题,熟悉相关物理知识)(注意审题,熟悉相关物理知识)六、小结六、小结25思考题思考题.)0(cos,cos之之间间的的均均匀匀薄薄片片的的重重心心求求位位于于两两圆圆babrar 26ab xyo薄片关于薄片关于 轴对称轴对称x, 0 y则则 DDddxxDrdrrdba 20coscoscos2)()(224338abab .)(222ababab 思考题解答思考题
14、解答27一、一、 求锥面求锥面22yxz 被柱面被柱面xz22 所割下部分的所割下部分的曲面面积曲面面积. .二、二、 设 薄 片 所 占 的 闭 区 域设 薄 片 所 占 的 闭 区 域D是 介 于 两 个 圆是 介 于 两 个 圆 cos,cosbrar )0(ba 之间的闭区域之间的闭区域, ,求求均匀薄片的重心均匀薄片的重心. .三、三、 设有一等腰直角三角形薄片设有一等腰直角三角形薄片, ,腰长为腰长为a, ,各点处的各点处的面密度等于该点到直角顶点的距离的平方面密度等于该点到直角顶点的距离的平方, ,求薄片求薄片的重心的重心. .四、四、 设均匀薄片设均匀薄片( (面密度为常数面密度为常数 1)1)所占闭区域所占闭区域D由抛物由抛物线线xy292 与直线与直线2 x所围成所围成, ,求求xI和和yI. .练练 习习 题题28五、求面密度为常量五、求面密度为常量 的匀质半圆环形薄片的匀质半圆环形薄片: : 0,222221 zyRxyR对位于对位于z轴上点轴上点 )0)(, 0 , 0(0 aaM处单位质量的质点的引力处单位质量的质点的引力F. .六、 设由六、 设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南安全员a证题库大全及答案解析
- 互联网隐秘权益维护承诺书(4篇)
- 2025年通信行业5G网络发展与智能通讯设备研究报告及未来发展趋势预测
- 2025年旅游行业智慧化转型路径策略报告
- 交警安全宣传测试题及答案解析
- 2025年农业行业农业物联网与精准农业研究报告及未来发展趋势预测
- 顺德三模历史试卷及答案
- 企业办公标准化管理工具
- 家庭聚餐中的故事记事作文15篇范文
- 企业费用审批申请表单模板
- 2025年职业技能鉴定考试质量督导员测试题及答案
- (正式版)DB65∕T 4935-2025 《医疗机构即时检验质量管理规程》
- 2025小学五年级英语句型转换专项卷
- 能源产业政策调整评估分析报告
- 法律职业资格考试客观题(试卷一)试卷与参考答案(2025年)
- 2026中国大唐集团有限公司校园招聘备考考试题库附答案解析
- 2025年新高考一卷数学试卷及答案
- 2025至2030中国纳米铜粉市场销量预测与未来前景动态研究报告
- 慢阻肺健康管理培训课件
- 新产品转产流程标准操作手册
- 2025年北京公共交通控股集团有限公司招聘笔试备考试题及答案详解(全优)
评论
0/150
提交评论