




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 一维抛物线偏微分方程数值解法(1)解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法)Ut-Uxx=0, 0<x<1,0<t<=1(Ut-aUxx=f(x,t),a>0) U(x,0)=ex, 0<=x<=1,U(0,t)=et,U(1,t)=e(1+t), 0<t<=1精确解为:U(x,t)=e(x+t);下面给出两个matlab程序,实质一样(用的是向前欧拉格式)第二个程序由之前解线性方程组的G-S迭代法得到,迭代次数k=2(固定)function p u e x t=pwxywxq(h1,h2,m,n)% 解抛物线型一维
2、方程 向前欧拉格式 (Ut-aUxx=f(x,t),a>0)%不用解线性方程组,由下一层(时间层)的值就直接得到上一层的值%m,n为x,t方向的网格数,例如(2-0)/0.01=200;%e为误差,p为精确解u=zeros(n+1,m+1);x=0+(0:m)*h1;t=0+(0:n)*h2;for(i=1:n+1) u(i,1)=exp(t(i); u(i,m+1)=exp(1+t(i);endfor(i=1:m+1) u(1,i)=exp(x(i);endfor(i=1:n+1) for(j=1:m+1) f(i,j)=0; endendr=h2/(h1*h1); %此处r=a*h2
3、/(h1*h1);a=1 要求r<=1/2差分格式才稳定for(i=1:n) for(j=2:m) u(i+1,j)=(1-2*r)*u(i,j)+r*(u(i,j-1)+u(i,j+1)+h2*f(i,j); endendfor(i=1:n+1) for(j=1:m+1) p(i,j)=exp(x(j)+t(i); e(i,j)=abs(u(i,j)-p(i,j); endend或者:function u e p x t k=paowuxianyiweixq(h1,h2,m,n,kmax,ep)% 解抛物线型一维方程 向前欧拉格式 (Ut-aUxx=f(x,t),a>0)%kma
4、x为最大迭代次数%m,n为x,t方向的网格数,例如(2-0)/0.01=200;%e为误差,p为精确解syms temp;u=zeros(n+1,m+1);x=0+(0:m)*h1;t=0+(0:n)*h2;for(i=1:n+1) u(i,1)=exp(t(i); u(i,m+1)=exp(1+t(i);end for(i=1:m+1) u(1,i)=exp(x(i);endfor(i=1:n+1) for(j=1:m+1) f(i,j)=0; endenda=zeros(n,m-1);r=h2/(h1*h1);%此处r=a*h2/(h1*h1);a=1 要求r<=1/2差分格式才稳定
5、for(k=1:kmax) for(i=1:n) for(j=2:m) temp=(1-2*r)*u(i,j)+r*(u(i,j-1)+u(i,j+1)+h2*f(i,j); a(i+1,j)=(temp-u(i+1,j)*(temp-u(i+1,j); u(i+1,j)=temp; end end a(i,j)=sqrt(a(i,j); if(k>kmax) break; end if(max(max(a)<ep) break; endendfor(i=1:n+1) for(j=1:m+1) p(i,j)=exp(x(j)+t(i); e(i,j)=abs(u(i,j)-p(i,
6、j); endend 在命令窗口中输入: p u e x t=pwxywxq(0.1,0.005,10,200);>> surf(x,t,u)>> shading interp;>> xlabel('x');ylabel('t');zlabel('u');>> title('一维抛物线方程 向前欧拉法 数值解'); surf(x,t,p)>> shading interp;xlabel('x');ylabel('t');zlabel(
7、9;p');>> title('一维抛物线方程 向前欧拉法 精确解')同理: plot(x,u)>> xlabel('x');ylabel('u');>> title('固定时间 改变x u与x 的关系 数值解')p u e x t=pwxywxq(0.1,0.01,10,100); surf(x,t,u)Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering
8、Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering >> surf(x,t,e)Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering Warning: Axis limits outside float precision, use ZBuffer or Painters instead. Notrendering >> 所以空间步长与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能化地下车库综合施工及配套设施安装合同
- 2025年度高端住宅房产经纪代理服务合同书
- 自动驾驶卡车在物流配送中的无人驾驶车辆续航能力提升报告
- 2025别墅区物业业主委员会选举与运作合同
- 2025版民营中小企业劳动合同培训课程与服务包
- 2025年度带抵押权的二手房买卖合同范本
- 2025年度创意园区商铺租赁与创意孵化服务合同
- 2025版智能交通管理系统软件销售及运营合作协议
- 2025年度工程建设项目施工合同补充协议范本
- 2025年度石材家居装饰材料销售合同
- 2025至2030临床前CRO治疗行业发展趋势分析与未来投资战略咨询研究报告
- 2025年中国数据库市场研究报告
- 酒精戒断综合症治疗方案讲课件
- 工程造价培训用课件
- 储能消防培训课件
- 混凝土浇筑作业平台承重验算
- JG/T 220-2016铜铝复合柱翼型散热器
- 美乐家退会员终止协议书
- 情侣间恋爱合同协议书
- 会务服务技能试题及答案
- 城市轨道交通施工机械设备管理措施
评论
0/150
提交评论