优秀毕业论文我国电力消费因素分析_第1页
优秀毕业论文我国电力消费因素分析_第2页
优秀毕业论文我国电力消费因素分析_第3页
优秀毕业论文我国电力消费因素分析_第4页
优秀毕业论文我国电力消费因素分析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【实验作者】学号: 1032215227 pole【实验名称】 我国电力消费因素分析【实验目的】 通过查阅全国统计年鉴,分析总体的结构、变量的集中趋势、离散趋势及分布形态,对我国电力消费水平和其影响因素作出总结分析。【实验内容】 进入21世纪以来,中国经济一直保持了良好的发展势头,电力工业是国民经济和社会经济发展的基础产业,对经济发展影响程度日益突出。近年来,伴随着国民经济的持续快速发展我国能源消费快速增长,电力供应日趋紧张。由于电力短缺,有些地区陆续出现了拉闸限电的情况,政府也出台了推动电力供应的措施,但这并不能从根本上解决电力短缺问题。本文主要研究的是我国电力消费的因素分析,预测未来用电需

2、求提供依据从而对我国电力中长期发展战略提出一定的意见。数据主要来源于2010年中国统计年鉴,拟通过GDP,人口总量,工业总产值,电力出厂价价格指数等数据,建立全国电力消费总量的计量经济模型。一、 影响因素的选取根据本文的研究课题,在模型中以我们年电力消费总量作为因变量,选择解释变量如下:1全国GDP总额:一国经济增长水平由这个指标明确的反映出来。电力工业是国民经济和社会经济发展的基础产业,对电力的依赖性越来越高,所以我们将GDP作为电力消费量的一个影响因素。2全国人口总量:在电力消费上,我们不仅要关注工业用电,也要关注城乡居民的用电用电需求,每个人的正常工作和生活都需要不断的消费电力。3工业总

3、产值:总体上来说,工业部门多数属于高密度用电部门。随着工业生产现代化的发展,工业产品的生产效率大大提高,与此同时,对于生产过程中电力需求也大大提高,我们需要更多的考虑工业总产值变动的因素。4电力出厂价格指数:价格总能影响需求,电价波动会导致电力消费量的变动,所以我们引入价格因素,又因为各地区电价存在差异,直接引用较难,所以我们用电力出厂价指数来估计电价。二、 模型设定、根据我们以上分析,回归模型这里如下:(i=1,2.15)分别对应自1992年起至2006年的全国电力消费总量(单位:亿千瓦时)(i=1,2.15)分别对应自1992年起至2006年的全国GDP(单位:亿元)(i=1,2.15)分

4、别对应自1992年起至2006年的全国人口总量(单位:万人)(i=1,2.15)分别对应自1992年起至2006年的全国工业总产值(单位:亿元)(i=1,2.15)分别对应自1992年起至2006年的全国电力出厂价指数(i=1,2.15)随机扰动项序列三、 样本数据的收集 年份电力消费总量(亿千瓦时)GDP(亿元)人口总量工业总产值(亿元)电力出厂价指数1992年7859.20 26923.50 117171.00 27724.21 108.80 1993年8426.50 35333.90 118517.00 39693.00 147.86 1994年9260.40 48197.90 1198

5、50.00 51353.03 206.26 1995年10023.40 60793.70 121121.00 54946.86 225.86 1996年10764.30 71176.60 122389.00 62740.16 255.45 1997年11284.40 78973.00 123626.00 68352.68 291.21 1998年11598.40 84402.30 124761.00 67737.14 307.23 1999年12305.20 89677.10 125786.00 72707.04 309.99 2000年13471.40 99214.60 126743.00

6、85673.66 317.43 2001年14633.50 109655.20 127627.00 95448.98 324.73 2002年16331.50 120332.70 128453.00 110776.48 327.33 2003年19031.60 135822.80 129227.00 142271.22 330.27 2004年21971.40 159878.30 129988.00 201722.19 338.20 2005年24940.40 184937.40 130756.00 251619.50 352.41 2006年28588.00 216314.40 131448

7、.00 316588.96 362.27 数据来源:中华人民共和国统计年鉴 (中华人民共和国国家统计局)四、 数据平稳性检验由于所用数据为时间序列数据,需要检验其平稳性,分别对电力消费总量(Y),GDP、人口总量工业总产值,电力出厂价指数进行单位根检验,Null Hypothesis: D(Y) has a unit rootExogenous: Constant, Linear TrendLag Length: 3 (Automatic based on SIC, MAXLAG=3)t-Statistic  Prob.*Augmented Dickey-Fuller te

8、st statistic-5.376921 0.0091Test critical values:1% level-5.2953845% level-4.00815710% level-3.460791*MacKinnon (1996) one-sided p-values.Warning: Probabilities and critical values calculated for 20 observations        and may not be accurate for a sample

9、 size of 10Augmented Dickey-Fuller Test EquationDependent Variable: D(Y,2)Method: Least SquaresDate: 11/18/11 Time: 17:00Sample (adjusted): 1997 2006Included observations: 10 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  D(Y(-1)-0.6928200.128851-5.3769210.0058D(Y(-1),2)0.

10、5921300.1797463.2942640.0301D(Y(-2),2)-0.4691190.155523-3.0163870.0393D(Y(-3),2)0.7347890.2137403.4377740.0263C-1059.811208.9839-5.0712570.0071TREND(1992)231.096132.496727.1113670.0021R-squared0.967452    Mean dependent var290.6700Adjusted R-squared0.926766    

11、;S.D. dependent var397.4776S.E. of regression107.5643    Akaike info criterion12.47776Sum squared resid46280.33    Schwarz criterion12.65932Log likelihood-56.38882    Hannan-Quinn criter.12.27860F-statistic23.77885    Du

12、rbin-Watson stat1.880893Prob(F-statistic)0.004485 表(1)对Y 进行一阶差分的ADF检验,从表(1)看,检验t统计量是-5.38,比显著性水平为1%的临界值都小,所以拒绝原假设,序列不存在单位根,是平稳的。Null Hypothesis: D(X1,2) has a unit rootExogenous: Constant, Linear TrendLag Length: 1 (Automatic based on SIC, MAXLAG=2)t-Statistic  Prob.*Augmented Dickey-Fulle

13、r test statistic-3.681331 0.0706Test critical values:1% level-5.1248755% level-3.93336410% level-3.420030*MacKinnon (1996) one-sided p-values.Warning: Probabilities and critical values calculated for 20 observations        and may not be accurate for a sa

14、mple size of 11Augmented Dickey-Fuller Test EquationDependent Variable: D(X1,3)Method: Least SquaresDate: 11/18/11 Time: 17:17Sample (adjusted): 1996 2006Included observations: 11 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  D(X1(-1),2)-1.4929930.405558-3.6813310.0078D(X

15、1(-1),3)0.2814780.2661951.0574130.3254C-8262.3613035.276-2.7221120.0297TREND(1992)1178.287363.14723.2446530.0142R-squared0.698108    Mean dependent var598.7364Adjusted R-squared0.568726    S.D. dependent var3957.365S.E. of regression2598.859   &

16、#160;Akaike info criterion18.83882Sum squared resid47278462    Schwarz criterion18.98351Log likelihood-99.61351    Hannan-Quinn criter.18.74761F-statistic5.395708    Durbin-Watson stat2.389043Prob(F-statistic)0.030770 表(2)对X1进行二阶差分ADF检验,从表(

17、2)看,检验t统计量是-3.68,比显著性水平为10%的临界值都小,所以拒绝原假设,序列不存在单位根,是平稳的。Null Hypothesis: D(LNX2) has a unit rootExogenous: NoneLag Length: 2 (Automatic based on SIC, MAXLAG=3)t-Statistic  Prob.*Augmented Dickey-Fuller test statistic-1.861659 0.0622Test critical values:1% level-2.7921545% level-1.9777

18、3810% level-1.602074*MacKinnon (1996) one-sided p-values.Warning: Probabilities and critical values calculated for 20 observations        and may not be accurate for a sample size of 11Augmented Dickey-Fuller Test EquationDependent Variable: D(LNX2,2)Method: L

19、east SquaresDate: 11/25/11 Time: 16:44Sample (adjusted): 1996 2006Included observations: 11 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  D(LNX2(-1)-0.0471070.025304-1.8616590.0997D(LNX2(-1),2)0.3651140.3704990.9854660.3533D(LNX2(-2),2)-0.1505890.353985-0.4254120.6817R-sq

20、uared0.184705    Mean dependent var-0.000479Adjusted R-squared-0.019118    S.D. dependent var0.000313S.E. of regression0.000316    Akaike info criterion-13.05755Sum squared resid7.97E-07    Schwarz criterion-12.94903Log

21、likelihood74.81653    Hannan-Quinn criter.-13.12596Durbin-Watson stat1.282587 表(3)对X2进行二阶差分ADF检验,从表(3)看,检验t统计量是-1.86,比显著性水平为10%的临界值小,所以拒绝原假设,序列不存在单位根,是平稳的。Null Hypothesis: D(X3,2) has a unit rootExogenous: Constant, Linear TrendLag Length: 2 (Automatic based on SIC, MAXLAG=2)t-St

22、atistic  Prob.*Augmented Dickey-Fuller test statistic-3.766856 0.0681Test critical values:1% level-5.2953845% level-4.00815710% level-3.460791*MacKinnon (1996) one-sided p-values.Warning: Probabilities and critical values calculated for 20 observations     

23、60;  and may not be accurate for a sample size of 10Augmented Dickey-Fuller Test EquationDependent Variable: D(X3,3)Method: Least SquaresDate: 11/18/11 Time: 21:07Sample (adjusted): 1997 2006Included observations: 10 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  

24、;D(X3(-1),2)-3.8534851.022998-3.7668560.0131D(X3(-1),3)1.9669990.7613922.5834230.0492D(X3(-2),3)0.7431400.5730451.2968260.2513C-51359.5216197.08-3.1709120.0248TREND(1992)7208.6172015.6543.5763170.0159R-squared0.885336    Mean dependent var1087.268Adjusted R-squared0.793604 &

25、#160;  S.D. dependent var17183.14S.E. of regression7806.434    Akaike info criterion21.07014Sum squared resid3.05E+08    Schwarz criterion21.22143Log likelihood-100.3507    Hannan-Quinn criter.20.90417F-statistic9.651394 

26、0;  Durbin-Watson stat2.112956Prob(F-statistic)0.014306 表(4)对X3进行二阶差分ADF检验,从表(4)看,检验t统计量是-3.77.,比显著性水平为10%的临界值都小,所以拒绝原假设,序列不存在单位根,是平稳的。Null Hypothesis: D(X4,2) has a unit rootExogenous: Constant, Linear TrendLag Length: 1 (Automatic based on SIC, MAXLAG=2)t-Statistic  Prob.*Augme

27、nted Dickey-Fuller test statistic-5.285658 0.0081Test critical values:1% level-5.1248755% level-3.93336410% level-3.420030*MacKinnon (1996) one-sided p-values.Warning: Probabilities and critical values calculated for 20 observations        and may not be

28、accurate for a sample size of 11Augmented Dickey-Fuller Test EquationDependent Variable: D(X4,3)Method: Least SquaresDate: 11/18/11 Time: 21:11Sample (adjusted): 1996 2006Included observations: 11 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  D(X4(-1),2)-1.9815450.374891-

29、5.2856580.0011D(X4(-1),3)0.4540200.1877142.4186770.0462C-17.913959.333267-1.9193650.0964TREND(1992)1.5138230.9117961.6602640.1408R-squared0.883625    Mean dependent var3.131818Adjusted R-squared0.833750    S.D. dependent var18.78307S.E. of regression7.658571&#

30、160;   Akaike info criterion7.184816Sum squared resid410.5760    Schwarz criterion7.329505Log likelihood-35.51649    Hannan-Quinn criter.7.093609F-statistic17.71677    Durbin-Watson stat1.030766Prob(F-statistic)0.001194 表(5)对

31、X4进行二阶差分ADF检验,从表(5)看,检验t统计量是-5.26,比显著性水平为5%的临界值都小,所以拒绝原假设,序列不存在单位根,是平稳的。 结论,从检验结果可知Y,X1,X2,X3,X4都为平稳序列,可直接使用,建立模型。五、模型的估计 运用最小二乘法(OLS)对模型进行回归分析,得到结果如下Dependent Variable: YMethod: Least SquaresDate: 11/18/11 Time: 21:52Sample: 1992 2006Included observations: 15VariableCoefficientStd. Errort-Statistic

32、Prob.  C-48288.7423646.18-2.0421370.0684X10.0579140.0416551.3903180.1946X20.4806250.2064602.3279360.0422X30.0304280.0164421.8505860.0940X4-22.791234.089523-5.5730760.0002R-squared0.998785    Mean dependent var14699.31Adjusted R-squared0.998298    S.D

33、. dependent var6288.756S.E. of regression259.4133    Akaike info criterion14.21592Sum squared resid672952.4    Schwarz criterion14.45194Log likelihood-101.6194    Hannan-Quinn criter.14.21341F-statistic2054.400    Durbin

34、-Watson stat1.414818Prob(F-statistic)0.000000我们可以看到R-squared和Adjusted R-squared都接近于1,表明模型拟合的效果非常好,解释变量系数的t检验除X1以外都显著,Y = C(1) + C(2)*X1 + C(3)*X2 + C(4)*X3 + C(5)*X4Y = -48288.7438148 + 0.0579136581183*X1 + 0.480624618597*X2 + 0.0304278955754*X3 - 22.7912259877*X4若改变模型设定形式,采用对数形式后进行回归结果如下Dependent V

35、ariable: LNYMethod: Least SquaresDate: 11/20/11 Time: 14:16Sample: 1992 2006Included observations: 15VariableCoefficientStd. Errort-StatisticProb.  C-35.720166.931618-5.1532210.0004LNX10.3724900.1056743.5249070.0055LNX23.4421880.6326535.4408800.0003LNX30.2972710.0432516.8731410.0000LNX4-0.

36、4979090.059549-8.3613940.0000R-squared0.999357    Mean dependent var9.518860Adjusted R-squared0.999099    S.D. dependent var0.396157S.E. of regression0.011890    Akaike info criterion-5.764960Sum squared resid0.001414    

37、;Schwarz criterion-5.528943Log likelihood48.23720    Hannan-Quinn criter.-5.767474F-statistic3882.636    Durbin-Watson stat2.532065Prob(F-statistic)0.000000我们发现,采用对数形式后模型的R2进一步提高, lnx1和lnx2的检验变量t都很小,lnx3和lnx4的检验变量t为0,所以修改模型为对数形式。 LNY = C(1) + C(2)*LNX1 + C(3)*

38、LNX2 + C(4)*LNX3 + C(5)*LNX4 LNY = -35.720161358 + 0.372489956351*LNX1 + 3.44218763279*LNX2 + 0.29727132501*LNX3 - 0.497908956484*LNX4 六 回归结果的检验 (一)统计检验 1、从回归的结果看,方程样本的判定系数R2在调整前和调整后都非常的高,表明方程拟合效果非常好。2、系统显著性检验,调整前x1和x3的p值大于0.05,没有通过t检验,但是在调整后,所以的系数都通过了t检验。(二)计量经济学检验1、异方差检验WHITE检验结果如下:Heteroskedastic

39、ity Test: WhiteF-statistic1.205946    Prob. F(10,4)0.4639Obs*R-squared11.26389    Prob. Chi-Square(10)0.3373Scaled explained SS3.146636    Prob. Chi-Square(10)0.9778Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 11/20/11

40、 Time: 15:02Sample: 1992 2006Included observations: 15Collinear test regressors dropped from specificationVariableCoefficientStd. Errort-StatisticProb.  C-0.0174910.223523-0.0782530.9414LNX1-0.0187290.047364-0.3954190.7127LNX12-0.0237390.029903-0.7938650.4717LNX1*LNX20.0026530.0099940.2654

41、770.8038LNX1*LNX30.0388530.0341801.1367130.3191LNX1*LNX40.0150400.0426220.3528620.7420LNX2*LNX3-0.0019060.006202-0.3072840.7740LNX2*LNX40.0025660.0063250.4057570.7057LNX32-0.0139560.010663-1.3088760.2607LNX3*LNX4-0.0181830.015037-1.2092240.2932LNX420.0004110.0245610.0167140.9875R-squared0.750926

42、0;   Mean dependent var9.43E-05Adjusted R-squared0.128240    S.D. dependent var0.000109S.E. of regression0.000102    Akaike info criterion-15.39566Sum squared resid4.17E-08    Schwarz criterion-14.87642Log likelihood126.4674&

43、#160;   Hannan-Quinn criter.-15.40119F-statistic1.205946    Durbin-Watson stat3.598213Prob(F-statistic)0.463866从表中我们可以看出,检验的伴随概率是0.3373,Obs*R-squared为11.26389,由white检验知,在=0.05下,查X2分布表,的临界值为(x2 10)18.307>11.26389,表明模型不存在异方差, ARCH检验结果如下:Heteroskedasticity Test: AR

44、CHF-statistic0.055602    Prob. F(3,7)0.9814Obs*R-squared0.256022    Prob. Chi-Square(3)0.9681Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 11/25/11 Time: 19:52Sample (adjusted): 1996 2006Included observations: 11 after adjustmentsVariableC

45、oefficientStd. Errort-StatisticProb.  C6.45E-055.91E-051.0918260.3111RESID2(-1)-0.1043340.374956-0.2782560.7889RESID2(-2)0.1011380.3716450.2721350.7934RESID2(-3)0.0312320.3694140.0845450.9350R-squared0.023275    Mean dependent var6.60E-05Adjusted R-squared-0.395322 

46、;   S.D. dependent var0.000121S.E. of regression0.000143    Akaike info criterion-14.59501Sum squared resid1.43E-07    Schwarz criterion-14.45033Log likelihood84.27258    Hannan-Quinn criter.-14.68622F-statistic0.055602 

47、   Durbin-Watson stat2.003818Prob(F-statistic)0.981375从上表可以看出,Obs*R-squared=0.256022,在=0.05下,查X2分布表,的临界值=7.815>0.256022,表明模型不存在异方差。由于WHITE检验和ARCH检验同时表明没有异方差,所以我们认定模型不存在异方差。也可以从残差的散点图看出,是同方差图形。2自相关检验 先利用残差数据给出残差如下所示的相关图,我们初步判断序列存在负相关。 给定显著性水平0.05,差DW表,当n=15,k=4,dl为0.82,du为1.75而实验的DW

48、值为2.532大于du,4-du<DW<4所以序列存在负相关Breusch-Godfrey Serial Correlation LM Test:F-statistic0.903745    Prob. F(1,9)0.3666Obs*R-squared1.368793    Prob. Chi-Square(1)0.2420Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 11/25/11 Time: 18:45Samp

49、le: 1992 2006Included observations: 15Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb.  C0.3984046.9778170.0570960.9557LNX10.0142750.1072420.1331080.8970LNX2-0.0371910.636922-0.0583910.9547LNX3-0.0059400.043908-0.1352840.8954LNX4-0.0101650.

50、060785-0.1672300.8709RESID(-1)-0.3085920.324610-0.9506550.3666R-squared0.091253    Mean dependent var-2.22E-14Adjusted R-squared-0.413607    S.D. dependent var0.010049S.E. of regression0.011948    Akaike info criterion-5.727315Sum squared r

51、esid0.001285    Schwarz criterion-5.444095Log likelihood48.95486    Hannan-Quinn criter.-5.730332F-statistic0.180749    Durbin-Watson stat2.164899Prob(F-statistic)0.962923通过LM的检验,表明模型存在着一阶序列相关,既自相关。Dependent Variable: D(LNY)Method: Least Sq

52、uaresDate: 11/25/11 Time: 18:54Sample (adjusted): 1993 2006Included observations: 14 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  C0.1287640.0389193.3084960.0091D(LNX1)0.3342950.1010573.3079720.0091D(LNX2)-11.285024.607982-2.4490150.0368D(LNX3)0.1122990.0665031.6886460.1

53、256D(LNX4)-0.1529140.107488-1.4226080.1886R-squared0.916183    Mean dependent var0.092236Adjusted R-squared0.878931    S.D. dependent var0.037549S.E. of regression0.013065    Akaike info criterion-5.565293Sum squared resid0.001536    Schwarz criterion-5.337059Log likelihood43.95705    Hannan-Quinn criter.-5.586421F-statistic24.59421    Du

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论