




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上四边形知识点总结大全1四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.2多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180°;(2)任意多边形的外角和等于360°.3平行四边形的性质:因为ABCD是平行四边形Þ4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形Þ6. 矩形的判定:Þ四边形ABCD是矩形. 7菱形的性质:因为ABCD是菱形Þ8菱形的判定:Þ四边形四边形ABCD是菱形.9正方形的性质:因为ABC
2、D是正方形Þ (1) (2)(3) 10正方形的判定:Þ四边形ABCD是正方形. (3)ABCD是矩形又AD=AB 四边形ABCD是正方形11等腰梯形的性质:因为ABCD是等腰梯形Þ 12等腰梯形的判定:Þ四边形ABCD是等腰梯形 (3)ABCD是梯形且ADBCAC=BDABCD四边形是等腰梯形 14三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,
3、梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2S平行四边形 =ah. a为平行四边形的边,h为a上的高)3S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)四 常识:1若n是多边形的边数,则对角线条数公式是:.2规则图形折叠一般“出一对全等,
4、一对相似”.3如图:平行四边形、矩形、菱形、正方形的从属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.5梯形中常见的辅助线:正方形、矩形、菱形和平行四边形四者知识点串联汇总对角线相等对角线互相垂直有一个角是直角一组邻边相等平行四边形矩形菱形正方形平行四边形、菱形、矩形、正方形的有关概念图形定义平行四边形两组对边分别平行的四边形叫做平行四边形菱形一组邻边相等的平行四边形叫做菱形矩形一个内角是直角的平行四边形叫做矩形正方形一组邻边相等的
5、矩形叫做正方形平行四边形、菱形、矩形、正方形的有关性质图形边角对角线平行四边形对边平行且相等对角相等对角线互相平分菱形对边平行,四条边相等对角相等两对角线互相垂直平分,每一条对角线平分一组对角矩形对边平行且相等四个角都是直角对角线互相平分且相等正方形对边平行、四条边都相等四个角都是直角两条对角线互相平分、垂直、相等,每一条对角线平分一组对角平行四边形、菱形、矩形、正方形的判别方法图形判别方法平行四边形两组对边分别平行的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形菱形一组邻边相等的平行四边形是菱形四条边都相等的四边形是菱形对角线互相垂直的平行四边形是菱形矩形一个内角是直角的平行四边形是矩形对角线相等的平行四边形是矩形正方形一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形对角线相等的菱形是正方形二、梯形常见的辅助线1.延长两腰交于一点 作用:使梯形问题转化为三角形问题。 若是等腰梯形则得到等腰三角形。 2.平移一腰 作用:使梯形问题转化为平行四边形及三角形问题。 3.作高作用:使梯形问题转化为直角三角形及矩形问题。4.平移一条对角线 作用:(1)得到平行四边形ACED,使CE=AD,BE等于上、下底的和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育技术的新篇章区块链与生物实验数据管理的融合
- 扁桃体白喉的治疗及护理
- 产后医疗照顾的护理课件
- 结核性多浆膜腔积液护理
- 铁路行包运输服务员(铁路行李员)实操任务书
- 地勘钻探工职业技能鉴定经典试题含答案
- 雷达装配工安全教育培训手册
- 感动校园之星活动方案
- 宣扬部门工作方案
- 农网配电营业工实操任务书
- 历年全国普通话考试真题50套
- 昆明理工大学《大学物理》2021-2022学年第一学期期末试卷
- 智能物业管理大数据应用方案
- 香港公司股东协议书范本
- DB43T 876.8-2015 高标准农田建设 第8部分:科技服务
- 普通洗车操作流程及操作指导书
- 伤寒与副伤寒患者的护理
- 2024年辽宁电工(高级技师)高频核心题库300题(含解析)
- 北师大版二年级下册竖式计算题练习200道及答案
- DL∕T 5539-2018 采动影响区架空输电线路设计规范
- 低空经济与无人机应用
评论
0/150
提交评论