版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线线角、线面角与二面角习题一、复习目标1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法 2.理解直线与平面所成角的概念,并掌握求线面角常用方法3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法.二、课前预习1.在空间四边形ABCD中,AD=BC=2, E、F分别为AB、CD的中点且EF=,AD、BC所成的角为 .2.如图,在长方体ABCD-A1B1C1D1中 ,B1C和C1D与底面所成的角分别为60和45,则异面直线B1C和C1D所成角的余弦值为 ( ) (A). (B). (C). (D). 3.平面与直线所成的角为,则直线
2、与平面内所有直线所成的角的取值范围是 4.如图,ABCD是正方形,PD平面ABCD,PD=AD,则PA与BD所成的角的度数为(A).30 (B).45 (C).60 (D).905.有一个三角尺ABC,A=30, C=90,BC是贴于桌面上,当三角尺与桌面成45角时,AB边与桌面所成角的正弦值是 三、典型例题例1.(全国) 如图,正方形ABCD所在平面与正方形ABEF所在平面成60角,求异面直线AD与BF所成角的余弦值.备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有:平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.补形法:把空间图形补成熟悉的几何体,其
3、目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B所成的角.备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:利用平面垂直的性质找平面的垂线.点的射影在面内的特殊位置.例3. 已知直三棱住ABC-A1B1C1,AB=AC, F为棱BB1上一点,BFFB1=21, BF=BC=. (1)若D为BC的中点,E为线段AD上不同于A、D的任意一点,证明:EFF
4、C1; (2)试问:若AB=,在线段AD上的E点能否使EF与平面BB1C1C成60角,为什么?证明你的结论.备课说明:这是一道探索性命题,也是近年高考热点问题,解决这类问题,常假设命题成立,再研究是否与已知条件矛盾,从而判断命题是否成立.四、反馈练习1设集合A、B、C分别表示异面直线所成的角、平面的斜线与平面所成的角、直线与平面所成的角的取值范围,则 (A)A=B=C (B)A=BC (C)ABC (D) BAC.2两条直线,与平面所成的角相等,则直线,的位置关系是 (A)平行 (B)相交 (C)异面 (D) 以上均有可能.3设棱长为1的正方体ABCD-A1B1C1D1中,M、N分别为AA1和
5、BB1的中点,则直线CM和D1N所成角的正弦值为 .4已知、是一对异面直线,且、成60o角,则在过空间任意点P的所有直线中,与、均成60o角的直线有 条.5异面直线、互相垂直,与成30o角,则与所成角的范围是 .6ACB=90在平面内,PC与CA、CB所成的角PCA=PCB=60o,则PC与平面所成的角为 .7设线段AB=,AB在平面内,CA,BD与成30角,BDAB,C、D在同侧,CA=BD=.求: (1)CD的长;(2)CD与平面所成角正弦值.线面角与面面角练习一、知识与方法要点:1斜线与平面所成的角就是斜线与它在平面内的射影的夹角。求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定
6、过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。若垂足的位置难以确定,可考虑用其它方法求出斜线上一点到平面的距离。2二面角的大小用它的平面角来度量,求二面角大小的关键是找到或作出它的平面角(要证明)。作二面角的平面角经常要用三垂线定理,关键是过二面角的一个面内的一点向另一个面作垂线,并确定垂足的位置。若二面角的平面角难以作出,可考虑用射影面积公式求二面角的大小。3判定两个平面垂直,关键是在一个平面内找到一条垂直于另一个平面的直线。两个平面垂直的性质定理是:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面二、例题例1正方体ABCD-A1B1C1D1中
7、,M为C1D1中点(1)求证:AC1平面A1BD(2)求BM与平面A1BD成的角的正切值解: 例2如图,把等腰直角三角形ABC以斜边AB为轴旋转,使C点移动的距离等于AC时停止,并记为点P (1)求证:面ABP面ABC;(2)求二面角C-BP-A的余弦值例3如图所示,在正三棱柱中,截面侧面(1)求证:;(2)若,求平面与平面所成二面角(锐角)的度数三、作业: 1已知平面a的一条斜线a与平面a成q角,直线bÌa,且a,b异面,则a与b所成的角为 A有最小值q,有最大值B无最小值,有最大值。C有最小值q,无最大值D有最小值q,有最大值p-q。2下列命题中正确的是( )A过平面外一点作该平
8、面的垂面有且只有一个B过直线外一点作该直线的平行平面有且只有一个C过直线外一点作该直线的垂线有且只有一条D过平面外的一条斜线作该平面的垂面有且只有一个3一条长为60的线段夹在互相垂直的两个平面之间,它和这两个平面所成的角分别为 45°和30°,这条线段的两个端点向平面的交线引垂线,则垂足间的距离是( )A30B20C15D124设正四棱锥SABCD的侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成的角是( )A30°B45°C60°D90°5正三棱锥的侧面与底面所成的二面角为,则它的侧棱与底面所成的角为 6A是BCD所在
9、平面外的点,BAC=CAB=DAB=60°,AB=3,AC=AD=2. ()求证:ABCD; ()求AB与平面BCD所成角的余弦值.7正四面体ABCD中,E是AD边的中点,求:CE与底面BCD所成角的正弦值8在四面体ABCD中,DA面ABC,ABC90°,AECD,AFDB求证:(1)EFDC;(2)平面DBC平面AEF二面角题目:1、如图所示,已知面,二面角的平面角为,求证:2如图,在空间四边形中,是正三角形,是等腰直角三角形,且,又二面角为直二面角,求二面角的大小。例3设在平面内的射影是直角三角形的斜边的中点,求(1)AC与平面BCD所成角的大小;(2)二面角的大小;(3)异面直线AB和CD所成角的大小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33433-2016船用气调保鲜系统》
- 医疗数据安全治理:区块链应急响应治理流程
- 脉管瘤MRI课件教学课件
- 医疗数据安全应急演练中的攻防演练设计
- 医疗数据安全审计的区块链成熟度模型
- 医疗数据安全培训的区块链技术应用保障措施
- 【9道第三次月考】安徽省阜阳市2025-2026学年九年级上学期12月月考道德与法治试题(含解析)
- 医疗数据安全共享风险评估
- 医疗数据安全共享的区块链技术伦理框架
- 胆汁淤积性肝炎课件
- 海尔集团预算管理实践分析
- 永辉超市存货管理
- 10kV环网柜(箱)标准化设计方案(2023版)
- 余热发电岗前培训
- 变压器性能测试的实施方案
- 科技研发项目管理办法
- 重症胰腺炎个案护理
- (2025年标准)无租用车协议书
- 钢筋装配式施工技术研究
- 2024(新人教版)七年级道法上册专项训练:期末必考【材料分析题】含答案
- 【语文】清远市小学二年级上册期末试卷(含答案)
评论
0/150
提交评论