版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高一数学必修5不等式与不等关系总复习学案(教师版)编写:邓军民一,复习1.不等关系:参考教材73页的8个性质;2. 一元二次不等式与相应的函数、相应的方程之间的关系:判别式二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R3.一元二次不等式恒成立情况小结:()恒成立()恒成立4. 一般地,直线把平面分成两个区域(如图):表示直线上方的平面区域;表示直线下方的平面区域说明:(1)表示直线及直线上方的平面区域;表示直线及直线下方的平面区域 (2)对于不含边界的区域,要将边界画成虚线5.基本不等式: (1).如果,那么(2). (当且仅当时取“”)二.例题与练习例 解下列不等式:(1)
2、; (2) ;(3) ; (4) 解:(1)方程的解为根据的图象,可得原不等式的解集是(2)不等式两边同乘以,原不等式可化为方程的解为根据的图象,可得原不等式的解集是(3)方程有两个相同的解根据的图象,可得原不等式的解集为(4)因为,所以方程无实数解,根据的图象,可得原不等式的解集为练习1. (1)解不等式;(若改为呢?)(2)解不等式;解:(1)原不等式 (该题后的答案:).(2)即.例2. 不等式(m22m3)x2(m3)x10的解集为R,则实数m的取值范围为_m3_例3设,则的最小值是 ( D )(A)1 (B)2 (C)3 (D)44.已知 x>0,y>0,x+2y+2xy
3、=8,则x+2y的最小值是 ( B )(A).3 (B).4 (C). (D). 6.的最小值为 3 .7. 设a > b > c,nN,且+恒成立,则n的最大值为(C)(A)2 (B)3 (C)4 (D)5例4已知为两两不相等的实数,求证:证明:为两两不相等的实数,以上三式相加:所以,练习4若,求的最小值。解:,当且仅当,即时取等号,当时,取最小值.三.课堂小结1.理解一元二次方程、一元二次不等式及二次函数三者之间的关系,掌握一元二次不等式的解法;2.掌握号一元二次不等式恒成立的问题基本原理;3.学会用平面区域表示二元一次不等式组;掌握好简单的二元线性规划问题的解法; 解线性规划
4、应用题的一般步骤:设出未知数;列出约束条件;建立目标函数;求最优解;4.掌握好基本不等式及其应用条件;四.课后作业1.如果,那么,下列不等式中正确的是( A )(A) (B) (C) (D)2.不等式的解集是( D )A B C D3. 若,则下列不等式成立的是( C ) (A). (B). (C).(D).4. 若a,b,c0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为( D )(A)-1 (B) +1 (C) 2+2 (D) 2-25. 不等式的解集是_ .(KEY:)6.已知实数满足,则的最大值是_.(KEY:0)7.设函数的定义域为集合M,函数的定义域为集合N求:(1)集
5、合M,N;(2)集合,解:() () .8. 若,则为何值时有最小值,最小值为多少?解:, , ,=,当且仅当即时.高一数学必修5不等式与不等关系总复习学案(学生版)编写:邓军民一,复习1.不等关系:参考教材73页的8个性质;2. 一元二次不等式与相应的函数、相应的方程之间的关系:判别式二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R3.一元二次不等式恒成立情况小结:()恒成立()恒成立4. 一般地,直线把平面分成两个区域(如图):表示直线上方的平面区域;表示直线下方的平面区域说明:(1)表示直线及直线上方的平面区域;表示直线及直线下方的平面区域 (2)对于不含边界的区域,要将边
6、界画成虚线5.基本不等式: (1).如果,那么(2). (当且仅当时取“”)二.例题与练习例 解下列不等式:(1) ; (2) ;(3) ; (4) 练习1. (1)解不等式;(若改为呢?)(2)解不等式; 例2.已知关于的不等式的解集是,求实数之值 练习2已知不等式的解集为求不等式的解集 例3设,式中变量满足条件,求的最大值和最小值练习3设,式中满足条件,求的最大值和最小值例4已知为两两不相等的实数,求证:练习4若,且,求的最小值。三.课堂小结1.理解一元二次方程、一元二次不等式及二次函数三者之间的关系,掌握一元二次不等式的解法;2.掌握号一元二次不等式恒成立的问题基本原理;3.学会用平面区
7、域表示二元一次不等式组;掌握好简单的二元线性规划问题的解法; 解线性规划应用题的一般步骤:设出未知数;列出约束条件;建立目标函数;求最优解;4.掌握好基本不等式及其应用条件;四.课后作业1.如果,那么,下列不等式中正确的是( )(A) (B) (C) (D)2.不等式的解集是( )A B C D3. 若,则下列不等式成立的是( ) (A). (B). (C).(D).4. 若a,b,c0且a(a+b+c)+bc=4-2,则2a+b+c的最小值为( )(A)-1 (B) +1 (C) 2+2 (D) 2-25. 不等式的解集是_ .6.已知实数满足,则的最大值是_.7.设函数的定义域为集合M,函
8、数的定义域为集合N求:(1)集合M,N;(2)集合, 8. 若,则为何值时有最小值,最小值为多少? 高一数学必修5不等式与不等关系专题练习命题:邓军民一、选择题1. 已知a,b,cR,下列命题中正确的是A、 B、C、 D、2.设a,bR,且ab,a+b=2,则下列不等式成立的是 ( )A、 B、C、 D、3二次方程,有一个根比大,另一个根比小,则的取值范围是( )A B C D4下列各函数中,最小值为的是 ( )A B,C D5已知函数的图象经过点和两点,若,则的取值范围是( )A B C D 6不等式组的区域面积是 ( )A B C D 7、已知正数x、y满足,则的最小值是( )18 16
9、C8 D108已知不等式的解集为,则不等式的解集为 A、 B、 C、 D、 ( )二、填空题9不等式的解集是 10已知x2,则y的最小值是 11对于任意实数x,不等式恒成立,则实数k的取值范围是 12、设满足且则的最大值是 。三、解答题13解不等式14、正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)8abc。15已知x、y满足不等式,求z=3x+y的最大值与最小值。16. 已知二次函数的二次项系数为a,且不等式的解集为(1,3). (1)若方程有两个相等的根,求的解析式; (2)若的最大值为正数,求a的取值范围.高一数学必修5不等式与不等关系专题练习KEY命题:邓军民一、选择题B,B,C,D,B,B,A,B二、填空题9 10.4,11.,12.2, 三、解答题13.解:因为 所以有 14.证明: a+b+c=1 1-a=b+c,1-b=a+c,1-c=a=b a>0,b>0,c>0 b+c2>0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030欧洲智能咖啡机制造行业供需调研投资评估规划研究报告
- 2025-2030欧洲旅游行业市场现状供给分析及投资评估规划建议分析研究
- 2025-2030欧洲新能源汽车自动驾驶行业市场深度调研及发展趋势和前景预测研究报告
- 2025-2030欧洲家电行业市场系统研究及技术升级与市场占有率分析报告
- 2026安徽省能源集团有限公司校园招聘备考题库及答案详解一套
- 2025年哈尔滨方正县“归雁计划”备考题库及答案详解(考点梳理)
- 2026四川大学华西医院医院感染管理部项目制科研助理招聘1人备考题库及完整答案详解
- 2026四川成都医体招聘29人备考题库带答案详解
- 2025河北邢台市中心血站第二批招聘编外人员1人备考题库及答案详解一套
- 2025长影集团有限责任公司招聘3人备考题库完整参考答案详解
- 2026年扬州工业职业技术学院高职单招职业适应性测试参考题库含答案解析
- 安全帽使用规范制度
- 2026国家电投集团苏州审计中心选聘15人笔试模拟试题及答案解析
- 2026年桐城师范高等专科学校单招职业技能考试题库及答案1套
- 雾化吸入操作教学课件
- 2025年小学图书馆自查报告
- 【语文】广东省佛山市罗行小学一年级上册期末复习试卷
- 2025年医疗器械注册代理协议
- 新疆三校生考试题及答案
- 2025新疆亚新煤层气投资开发(集团)有限责任公司第三批选聘/招聘笔试历年参考题库附带答案详解
- 围手术期心肌梗塞的护理
评论
0/150
提交评论