




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.1.4二次函数y=ax2+bx+c的图象和性质第二十二章 二次函数导入新课讲授新课当堂练习课堂小结第2课时 用待定系数法求二次函数的解析式 学习目标1.会用待定系数法求二次函数的表达式.(难点)2.会根据待定系数法解决关于二次函数的相关问题.(重点)导入新课导入新课复习引入1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?2.求一次函数表达式的方法是什么?它的一般步骤是什么?2个2个待定系数法(1)设:(表达式)(2)代:(坐标代入)(3)解:方程(组)(4)还原:(写表达式)一般式法二次函数的表达式一探究归纳问题1 (1)二次函数y=ax2+bx+
2、c(a0)中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?3个3个(2)下面是我们用描点法画二次函数的图象所列表格的一部分: 讲授新课讲授新课解: 设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式. 9a-3b+c=0,a-b+c=0,c=-3,解得a=-1,b=-4,c=-3.所求的二次函数的表达式是y=-x2-4x-3.待定系数法步骤:1.设:(表达式)2.代:(坐标代入)3.解:方程(组)4.还原:(写解析式)这种已知三点求二次函数表达式的方法
3、叫做一般式法.其步骤是:设函数表达式为y=ax2+bx+c;代入后得到一个三元一次方程组;解方程组得到a,b,c的值;把待定系数用数字换掉,写出函数表达式.归纳总结一般式法求二次函数表达式的方法例1 一个二次函数的图象经过 (0, 1)、(2,4)、(3,10)三点,求这个二次函数的表达式.解: 设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0, 1),可得c=1. 又由于其图象经过(2,4)、(3,10)两点,可得4a+2b+1=4,9a+3b+1=10,解这个方程组,得3,2a3.2b所求的二次函数的表达式是2331.22yxx顶点法求二次函数的表达式二 选取顶点(-2
4、,1)和点(1,-8),),试求出这个二次函数的表达式.解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k得 y=a(x+2)2+1, 再把点(1,-8)代入上式得 a(1+2)2+1=-8, 解得 a=-1.所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.归纳总结顶点法求二次函数的方法这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:设函数表达式是y=a(x-h)2+k;先代入顶点坐标,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数表达式.例2 一个二次函数的图象经点 (0,
5、1),它的顶点坐标为(8,9),求这个二次函数的表达式.解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为 y=a(x-8)2+9.又由于它的图象经过点(0 ,1),可得 0=a(0-8)2+9. 解得 9.64a 所求的二次函数的解析式是29(8)9.64yx 解:(-3,0)()(-1,0)是抛物线y=ax2+bx+c与x轴的交点.所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).(其中x1、x2为交点的横坐标.因此得 y=a(x+3)(x+1).再把点(0,-3)代入上式得a(0+3)(0+1)=-3, 解得a=-1,所求的二次函数的表达式是y=-(
6、x+3)(x+1),即即y=-x2-4x-3.选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式. 交点法求二次函数的表达式三xyO1 2-1-2-3-4-1-2-3-4-512归纳总结交点法求二次函数表达式的方法 这种知道抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:设函数表达式是y=a(x-x1)(x-x2);先把两交点的横坐标x1, x2代入到表达式中,得到关于a的一元一次方程;将方程的解代入原方程求出a值;a用数值换掉,写出函数表达式.想一想确定二次函数的这三点应满足什么条件?任意三点不在同一直线上(其中两点的连线可平行于x轴,但不可以平行于y轴.特殊条件
7、的二次函数的表达式四例3.已知二次函数yax2 c的图象经过点(2,3)和(1,3),求这个二次函数的表达式 解:该图象经过点(2,3)和(1,3), 3=4a+c,3=a+c,所求二次函数表达式为 y=2x25.a=2,c=5.解得关于y轴对称已知二次函数yax2 bx的图象经过点(2,8) 和(1,5),求这个二次函数的表达式 解:该图象经过点(-2,8)和(-1,5),做一做图象经过原点8=4a-2b,5=a-b, 解得a=-1,b=-6. y=-x2-6x.当堂练习当堂练习1.如图,平面直角坐标系中,函数图象的表达式应是 .234yx= 注 y=ax2与y=ax2+k、y=a(x-h)
8、2、y=a(x-h)2+k一样都是顶点式,只不过前三者是顶点式的特殊形式.注意xyO1 2-1-2-3-4321-13452.过点(2,4),),且当x=1时,y有最值为6,则其表达式是 .顶点坐标是(1,6)y=-2(x-1)2+63.已知二次函数的图象经过点(1,5),(0,4)和(1,1)求这个二次函数的表达式解:设这个二次函数的表达式为yax2bxc依题意得 这个二次函数的表达式为y2x23x4.abc1,c4,a-bc-5,解得b3,c4,a2,4.已知抛物线与x轴相交于点A(1,0),B(1,0),且过点M(0,1),求此函数的表达式解:因为点A(1,0),B(1,0)是图象与x轴
9、的交点,所以设二次函数的表达式为ya(x1)(x1)又因为抛物线过点M(0,1),所以1a(01)(01),解得a1,所以所求抛物线的表达式为y(x1)(x1),即yx21.5.如图,抛物线yx2bxc过点A(4,3),与y轴交于点B,对称轴是x3,请解答下列问题:(1)求抛物线的表达式;解:(1)把点A(4,3)代入yx2bxc得164bc3,c4b19.对称轴是x3, 3,b6,c5,抛物线的表达式是yx26x5;2b(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD8,求BCD的面积(2)CDx轴,点C与点D关于x3对称点C在对称轴左侧,且CD8,点C的横坐标为7,点C的纵坐标为(7)26(7)512.点B的坐标为(0,5),BCD中CD边上的高为1257,BCD的面积 8728.12
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年玻尿酸注射资金申请报告代可行性研究报告
- 2023版烟草专卖执法人员资格考试题库含答案
- 2025秋湘教版(2024)七年级上册地理课件 5.1 天气与天气预报
- 2025年国际旅游管理与服务考试试题及答案
- 早产儿肚子的护理
- 2025年公共健康领域的考试试卷及答案
- 2025年公共关系管理资格考试试卷及答案展示
- 2025年工业机器人技术与应用考试题及答案
- 化纤企业安全培训
- 山东省济宁市2025届英语七下期末达标检测试题含答案
- 酒店用火用电安全管理制度
- 模具机加工管理制度
- 区畜牧局十五五总结及十五五规划
- 2025年普通高等学校招生全国统一考试(全国I卷英语)及答案
- 银行支行安全防范教育培训制度
- 艾梅乙考试试题及答案
- T/CECS 10363-2024薄壁不锈钢管件用法兰及法兰接头
- DB31/T 1096-2018医院日间手术管理规范
- 2025年MySQL数据库编程试题及答案
- C++冒泡排序实现试题及答案
- DB32-T 5119-2025 锂离子电池工厂生产安全技术规范
评论
0/150
提交评论