正余弦定理的实际应用_第1页
正余弦定理的实际应用_第2页
正余弦定理的实际应用_第3页
正余弦定理的实际应用_第4页
正余弦定理的实际应用_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正、余弦定理的实际应用一.知识点归纳:1.实际问题中的有关术语、名称俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角.如图中OD、OE是视线,是仰角, 是俯角.方向角方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成:正北或正南,北偏东××度,北偏西××度,南偏东××度,南偏西××度.方位角指从正北方向顺时针转到目标方向线的水平角,如点的方位角是.2. 解斜三角形应用题的一般步骤:(1)分析:理解题意

2、,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.二.例题讲解与赏析例1.用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角是和,已知B、D间的距离为a,测角仪的高度是b,求气球的高度.A C B北北152o32 o122o例2. 如图,货轮在海上以35海里/小时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为的方向航行为了

3、确定船位,在B点处观测到灯塔A的方位角为半小时后,货轮到达C点处,观测到灯塔A的方位角为求此时货轮C与灯塔A之间的距离例3.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与现测得,并在点测得塔顶的仰角为,求塔高北乙甲例4. 甲船在A处、乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西方向行驶,问经过多少小时后,甲、乙两船相距最近?例5.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到

4、甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?例6.如图,某住宅小区的平面图呈扇形AOC小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路,且拐弯处的转角为已知某人从沿走到用了10分钟,从沿走到用了6分钟若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米)例7.如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角均为,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,1.414,2.449) 例8.为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算M,N间的距离的步骤.例9.如图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论