




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高手支招3综合探究 进行复数的除法运算的步骤 利用复数的除法定义:把满足(c+di)(x+yi)=(a+bi)(c+di0)的复数 x+yi叫做复数a+bi除以复数c+di的商,记作(a+bi)÷(c+di)或,从而利用复数相等求得x,y的值即可.(c+di)(x+yi)=(cx-dy)+(dx+cy)i,(cx-dy)+(dx+cy)i=a+bi,由此可得解这个方程组得于是有(a+bi)÷(c+di)=.在进行复数除法运算时,通常先把(a+bi)÷(c+di)写成的形式,再把分子与分母都乘以分母的共轭复数c-di,化简后,也可以得出上面的结果.高手支招4典例精析
2、【例1】已知=1-ni,其中m、n是实数,i是虚数单位,则m+ni=( )A.1+2i B.1-2i C.2+i D.2-i思路分析:可先将=1-ni去分母后展开化简,再利用复数相等解之.本题也可将等式左边分母实数化,再利用复数相等解之.将=1-ni两边同乘以1+i,得m=(1-ni)(1+i)=1+n+(1-n)i,由复数相等法则,得从而所以m+ni=2+i.答案:C【例2】复数=( )A.i B.-I C.2-I D.-2+i思路分析:此题可以直接进行分母“有理化”(即分子分母同乘以分母的共轭复数),化简解得,或由观察得出:将分子化简后,分母乘以i则可以得到分子,从而解得.原式=.答案:A
3、【例3】 若复数z=+i,则1+z+z2+z3+z2 006( )A.0 B.+i C.-i D.-i思路分析:由于z=+i正好是的一个值,故具有特性,即1+z+z2=0,利用此式,原式即可化简.1+z+z2+z3+z2 006中连续三项的和均为零,由于1+z+z2+z3+z2 006的项数2 007项正好是3的倍数项,故所求的和式为零.答案:A【例4】 如果复数(m2+i)(1+mi)是实数,则实数m等于( )A.1 B.-1 C. D.-思路分析:要使一个复数为实数,那只需要一个条件:虚部为0.将原式(m2+i)(1+mi)展开,得m2+m3i+i+mi2=(m2-m)+(m3+1)i,令
4、其虚部为零,即m3+1=0,即m=-1.答案:B【例5】若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b等于( )A.-2 B. C. D.2思路分析:(1+bi)(2+i)=(2-b)+(2b+1)i,依题意2-b=0b=2.答案:D【例6】设a是实数,且是实数,则a等于A. B.1 C. D.2思路分析:先化简,因为是实数,故其虚部为零,即=0,从而得a=1.答案:B【例7】设复数z满足=i,则z等于 ( )A.-2+i B.-2-I C.2-I D.2+i思路分析:由=i,得z=2-i.答案:C【例8】设x、y为实数,且,则x+y=_.思路分析:先将原式两边的分母实数
5、化,然后再利用复数相等即可求得x+y的值.将原式分母实数化,得(1+i)+(1+2i)=(1+3i),即5x(1+i)+2y(1+2i)=5(1+3i),即(5x+2y-5)+(5x+4y-15)i=0,利用复数相等的充要条件得x+y=4.答案:4【例9】 计算下列各式:(1)i2 006+(+i)8-()50;(2)(i)6.思路分析:(1)充分利用(1±i)2=±2i及i4n+k=ik将高次冥化为低次冥.(2)利用的性质解答.解:(1)i2 006+(+i)8-()50=i4×501+2+2(1+i)24-25=i2+(4i)4-()25=-1+256-i25
6、=255-i;(2)=+i,-i=-,(-i)6=(-)6=(3)2=1.【例10】 已知复数z=,若z2+az+b=1+i,试求实数a、b的值.思路分析:要求实数a、b的值,需先确定复数z的值,而要确定复数z,需对复数z进行化简,主要通过复数乘方,加减运算,最后通过分母实数化,从而化得结果.解:z=1+i,z2+az+b=(1+i)2+a(1+i)+b=(a+b)+(2+a)i,由已知z2+az+b=1+i,实数a、b的值分别为-1,2.【例11】 已知f(z)=2z+-3i,f(z+i)=6-3i,求f(-z)的值.思路分析:需要先利用已知式求出z,再将-z代入f(z)=2z+-3i中计算
7、.解:f(z)=2z+-3i,f(+i)=2(+i)+-3i=2+2i+z-i-3i=2+z-2i,又知f(+i)=6-3i,2+z-2i=6-3i,即2+z=6-i,设z=a+bi,则=a-bi,于是有2(a-bi)+a+bi=6-i,所以,解得a=2,b=1,z=2+i,f(-z)=f(-2-i)=2(-2-i)+(-2+i)-3i=-6-4i.【例12】 计算:(i)12+()8.思路分析: i=i(+i),1-i=(-2)(+i),由此,原式可以化简.解:原式=i12(+i)12+=1·1+=1+16(+i)=-7+8i.【例13】 已知复数z1=i(1-i)3.(1)求|z
8、1|;(2)若|z|=1,求|z-z1|的最大值.思路分析:(1)求模应求出复数的实部与虚部,再利用|a+bi|= 得出.(2)是考查复数几何意义的应用.解:(1)z1=i(1-i)3i(-2i)(1-i)=2(1-i),|z1|.(2)|z|=1可看成半径为1、圆心为(,)的圆,而点Z1可看成在坐标系中的点(2,-2),|z-z1|的最大值可以看成点(2,-2)到圆上点距离的最大值,由右图可知|z-z1|max=2+1.【例14】 证明:在复数范围内,方程|z|2+(1-i)-(1+i)z=(i为虚数单位)无解.思路分析:将已知条件化简后再由复数相等来解.证明:原方程化简为|z|2+(1-i)z-(1+i)z=1-3i.设z=x+yi(x、yR),代入上述方程得x2+y2-2xi-2yi=1-3i.将(2)代入(1),整理得8x2-12x+5=0.=-16<0,方程f(x)无实数解,原方程在复数范围内无解.高手支招5思考发现1.利用某些特殊复数的运算结果,如(1±i)2=±2i,(±i)3=1,=-i,=i,=-i,i的幂的周期性,对于简化复数的运算大有好处,在计算上经常用的结论最好能熟记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东邮电职业技术学院《建筑与装饰工程计价》2023-2024学年第二学期期末试卷
- 温州医科大学仁济学院《数据分析建模》2023-2024学年第二学期期末试卷
- 潇湘职业学院《金属材料概论》2023-2024学年第二学期期末试卷
- 2025年浙江温州高三三模高考技术试卷试题(含答案详解)
- 南昌工程学院《组织行为学与人力资源管理》2023-2024学年第二学期期末试卷
- 湖南体育职业学院《多媒体技术》2023-2024学年第二学期期末试卷
- 湖北经济学院《教育基础理论教育学》2023-2024学年第二学期期末试卷
- 汝州职业技术学院《田径普修(1)》2023-2024学年第二学期期末试卷
- 贵州医科大学神奇民族医药学院《机器学习案例分析1》2023-2024学年第二学期期末试卷
- 新疆维吾尔医学专科学校《智能制造》2023-2024学年第二学期期末试卷
- 多层流延膜机安全操作规程
- 【九年级】北京市丰台区初三一模数学试卷及答案
- 唐代服饰衣冠服制
- 农村宅基地使用权和房屋所有权权属确认申请审核表
- 医疗器械企业组织机构与部门设置说明
- 道路绿化安全技术交底
- 第15课+十月革命的胜利与苏联的社会主义实践【高效备课精研 + 知识精讲提升】 高一历史 课件(中外历史纲要下)
- 大学写作课课件-Chapter3-Effective-Sentences
- PET-物质安全资料表(MSDS)模板
- 机械通气常见并发症的预防与处理
- 公司绩效考核咨询方案
评论
0/150
提交评论