




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第二节 数列的极限教学目的:使学生理解数列极限的定义及性质,并能用定义证明一些简单数列的极限。教学重点:数列极限的定义及性质。教学过程:一、复习数列的定义:定义:数列是定义在自然数集上的函数,记为,由于全体自然数可以从小到大排成一列,因此数列的对应值也可以排成一列:,这就是最常见的数列表现形式了,有时也简记为或数列。数列中的每一数称为数列的项,第项称为一般项或通项。【例1】 书上用圆内接正边形的面积来近似代替该圆的面积时,得到数列 (多边形的面积数列)【例2】长一尺的棒子,每天截去一半,无限制地进行下去,那么剩下部分的长构成一数列: ,通项为。【例3】 都是数列,其通项分别为。注:在数轴上,
2、数列的每项都相应有点对应它。如果将依次在数轴上描出点的位置,限我们能否发现点的位置的变化趋势呢?显然,是无限接近于0的;是无增大的;的项是在1与两点跳动的,不接近于某一常数;无限接近常数1。对于数列来说,最重要的是研究其在变化过程中无限接近某一常数的那种渐趋稳定的状态,这就是常说的数列的极限问题。二、讲授新课数列的极限我们来观察的情况。从图中不难发现随着的增大,无限制地接近1,亦即充分大时,与1可以任意地接近,即可以任意地小,换言之,当充分大时可以小于预先给定的无论多么小的正数。例如,取,由,即从第101项开始,以后的项都满足不等式,或者说,当时,有。同理,若取,由,即从第10001项开始,以
3、后的项都满足不等式,或说,当时,有。一般地,不论给定的正数多么小,总存在一个正整数,当时,有。这就充分体现了当越来越大时,无限接近1这一事实。这个数“1”称为当时,的极限。定义:若对(不论多么小),总自然数,使得当时都有成立,这是就称常数是数列的极限,或称数列收敛于,记为,或()。如果数列没有极限,就说数列是发散的。【例4】证明数列收敛于1。证明:对,要使得,只须,所以取,当时,有,所以。注1:是衡量与的接近程度的,除要求为正以外,无任何限制。然而,尽管具有任意性,但一经给出,就应视为不变。(另外,具有任意性,那么等也具有任意性,它们也可代替) 2:是随的变小而变大的,是的函数,即是依赖于的。
4、在解题中,等于多少关系不大,重要的是它的存在性,只要存在一个,使得当时,有就行了,而不必求最小的。【例5】证明。证明:对,因为,因为 (此处不妨设,若,显然有)所以要使得,只须就行了。 即有. 所以取 ,当时,因为有 ,所以。注3:有时找比较困难,这时我们可把适当地变形、放大(千万不可缩小!),若放大后小于,那么必有。【例3】 设,证明的极限为0,即。证明:若,结论是显然的,现设,对,(因为越小越好,不妨设),要使得,即,只须两边放对数后,成立就行了。因为,所以,所以 。 取,所以当时,有成立。收敛数列的有关性质:定理1:(唯一性)数列不能收敛于两个不同的极限。证明:设和为的任意两个极限,下证
5、。 由极限的定义,对,必分别自然数,当时,有(1) 当时,有(2)令,当时,(1),(2)同时成立。现考虑: 由于均为常数,所以的极限只能有一个。【例4】证明数列是发散的。证明:(反证法)假设收敛,由唯一性,设,按定义,对自然数,当 时,考虑,而,总是一个“1”,一个“”,所以,所以矛盾, 所以 发散。定理2. (有界性)若数列收敛,那么它一定有界,即:对于数列 ,若正数,对一切,有。证明:设,由定义对自然数当时,所以当时,令,显然对一切,。注:本定理的逆定理不成立,即有界未必收敛。例如数列是有界的(),但数列不收敛。三、课堂练习四、布置作业第三节 函数的极限教学目的:使学生理解函数极限的概念
6、;理解函数左右极限的概念,以及函数极限存在与左、右 极限之间的关系。理解函数极限的性质。教学重点:函数极限的概念。教学过程:一、复习数列极限的定义及性质二、导入新课:由上节知,数列是自变量取自然数时的函数,因此,数列是函数的一种特殊情况。对于函数,自变量的变化主要表现在两个方面:一、 自变量任意接近于有限值,记为,相应的函数值的变化情况。二、当自变量的绝对值无限增大,记,相应的函数值的变化情况。三、讲授新课:(一)自变量趋向有限值时函数的极限与数列极限的意义相仿,自变量趋于有限值时的函数极限可理解为:当时,(为某常数),即当时,与无限地接近,或说可任意小,亦即对于预先任意给定的正整数(不论多么
7、小),当与充分接近时,可使得小于。用数学的语言说,即定义1:如果对(不论它多么小),总,使得对于适合不等式 的一切所对应的函数值满足:,就称常数为函数当时的极限,记为 ,或 (当时)注1:“与充分接近”在定义中表现为:,有,即。显然越小,与接近就越好,此与数列极限中的所起的作用是一样的,它也依赖于。一般地,越小,相应地也小一些。 2:定义中表示,这说明当时,有无限与在点(是否有)的定义无关(可以无定义,即使有定义,与值也无关)。 3:几何解释:对,作两条平行直线。由定义,对此,当,且时,有。即函数的图形夹在直线之间(可能除外)。换言之:当时,。从图中也可见不唯一!【例1】 证明 (为一常数)证
8、明:对,可取任一正数,当时,所以。【例2】 证明证明:对,要使得,只须, 所以取显然当时,有。【例3】 证明 。证明:对,因为所以 此处,即考虑附近的情况,故不妨限制为,即,。因为,要使,只须 ,即。取(从图形中解释),当时,有。 (二)左、右极限在函数极限的定义中,是既从的左边(即从小于的方向)趋于,也从的右边(即从大于的方向)趋于。但有时只能或需要从的某一侧趋于的极限。如分段函数及在区间的端点处等等。这样,就有必要引进单侧极限的定义:定义2:对,当时,当时,有.这时就称为当时的左右极限,记为或。 或。定理2:。【例4】,因为,所以不存在。【例5】设,求。 解:显然 因为,所以。 (三)自变量趋向无穷大时函数的极限定义3:设当时是有定义的,若对,当时,有,就称为当时的极限,记为或(当时)。注1:设在上有定义,若对,当时,有,就称为当时的极限,记为,或(当)(,或(当)。 2:。 3:若,就称为的图形的水平渐近线(若或,有类似的渐近线)。【例6】 证明。证明:对,因为,所以要使得,只须,故取,所以当时,有,所以。 (四)函数极限的性质定理1:(保号性)设,(i) 若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入门销售顾问培训课件
- 重庆驾驶员管理办法
- 长安区购药管理办法
- 院史馆捐赠管理办法
- 2025年浙江省杭州市示范名校高三物理第一学期期末检测试题
- 食品协管员管理办法
- 2025年中国铁路局招聘及笔试历年参考题库附带答案详解
- 紧急医学救援讲课文档
- 红领巾奖项管理办法
- 企业用电安全培训课件
- 4MWh储能系统技术方案
- 软件平台建设和运营合同
- 北京导游资格考试外语口试题四
- 高中数学必修一第一、二章综合测试卷(含解析)
- 1.3集合的基本运算(第1课时)课件高一上学期数学人教A版
- 《学前儿童卫生与保健》高职全套教学课件
- 《安宁疗护症状护理服务规范》编制说明
- 2024-2025学年八年级地理上册 第一章 单元测试卷(湘教版)
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 人居环境科学市公开课一等奖省赛课微课金奖课件
- 2023译林版新教材高中英语选择性必修第一册同步练习-Unit 1 Food matters
评论
0/150
提交评论