




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、标准文档莫尔库伦理论长期以来,人们根据对材料破坏现象的分析,提出了各种不同的强度理论。其中适用于土的强度理论有多种,不同的理论各有其优缺点。在土力学中被广泛采用的强度理论要推莫尔库伦强度理论。1773年,法国学者库伦(Coulomb)根据砂土的试验结果,提出土的抗剪强度f在应力变化不大的范围内,可表示为剪切滑动面上法向应力的线性函数。即f=tan后来库伦又根据粘性土的试验结果,提出更为普遍的抗剪强度公式:f=c+tan1936年,太沙基(Terzaghi)提出了有效应力原理。根据有效应力原理,土中总应力等于有效应力与孔隙水压力之和,只有有效应力的变化才会引起强度的变化。因此,土的抗剪强度f可表
2、示为剪切破坏面上法向有效应的函数。上述库仑公式应改写为f=c'+'tan'1910年莫尔(Mohr)提出材料产生剪切破坏时,破坏面上的f是该面上法向应力的函数,即f=f该函数在直角坐标系中是一条曲线,如图1所示,通常称为莫尔包线。土的莫尔包线多数情况下可近似地用直线表示,其表达式就是库伦所表示的直线方程。由库伦公式表示莫尔包线的土体抗剪强度理论称为莫尔库伦(MohrCoulomb)强度理论。图1 莫尔包线1. 土中某点的应力状态 我们先来研究土体中某点的应力状态,以便求得实用的土体极限平衡条件的表达式。为简单起见,下面仅研究平面问题。在地基土中任意点取出一微分单元体,设
3、作用在该微分体上的最大和最小主应力分别为1和3。而且,微分体内与最大主应力1作用平面成任意角度的平面mn上有正应力和剪应力图2(a)。(a) (b)图2 土中任意一点的应力(a)微分体上的应力;(b)隔离体上的应力为了建立、与1和3之间的关系,取微分三角形斜面体abc为隔离体图2(b)。将各个应力分别在水平方向和垂直方向上投影根据静力平衡条件得联立求解以上方程(a)、(b),即得平面mn上的应力由以上两式可知,在1和3已知的情况下,斜截面mn上的法向应力和剪应力仅与斜截面倾角有关。由式(1)得-1+322+2=1-322上式表示圆心为(1+32,0)、半径为1-32关的莫尔圆。莫尔圆上任一点代
4、表与大主应力1作用面成角的斜面,其纵坐标代表该面上的法向应力,横坐标代表该面上的剪应力。在直角坐标系中(图3)以为横坐标轴以为纵坐标轴,按图3 用莫尔应力圆求正应力和剪应力一定的比例尺,在轴上截取OB3,OC1,以O1为圆心,以(1-3)2为半径,绘制出一个应力圆。并从O1C开始逆时针旋转2角,在圆周上得到点A。可以证明,A点的横坐标就是斜面mn上的正应力,而其纵坐标就是剪应力。事实上,可以看出,A点的横坐标为OB+BO1+O1Acos2=3+121-3+121-3cos2 =121+3+121-3cos2=而A点的纵坐标为O1Asin2=121-3sin2=2. 土的极限平衡条件莫尔库伦破坏
5、准则 为了建立实用的土体极限平衡条件,将土体中某点的莫尔应力圆和土体的抗剪强度与法向应力关系曲线(简称抗剪强度线)画在同一个直角坐标系中,这样,就可以判断土体在这一点上是否达到极限平衡状态。由前述可知,莫尔应力圆上的每一点的横坐标和纵坐标分别表示土体中某点在相应平面上的正应力和剪应力,如果莫尔应力圆位于抗剪强度包线的下方图4(a)即通过该点任一方向的剪应力都小于土体的抗剪强度f,则该点土不会发生剪切破坏,而处于弹性平衡状态。若莫尔应力圆恰好与抗剪强度线相切图4(b),切点为B,则表明切点B所代表的平面上的剪应力与抗剪强度f相等,此时,该点土体处于极限平衡状态。(a) (b)图4 莫尔应力圆与土
6、的抗剪强度之间的关系(a)土处于弹性平衡状态;(b)土处于极限平衡状态根据莫尔应力圆与抗剪强度线相切的几何关系,就可以建立起土体的极限平衡条件。下面,我们就以图5中的几何关系为例,说明如何建立无粘性土的极限平衡条件图5 无粘性土极限平衡条件推导示意图 1=3tan245°+2 (2)土体达到极限平衡条件时,莫尔应力圆与抗剪强度线相切于B点,延长CB与轴交于A点,由图中关系可知OB=OA再由切割定理,可得13=OB2=OA2在AOC中,有12=OA2tan245°+212=13tan245°+2因此,1=3tan245°+2又由于,tan45°+
7、2=1tan45°-2=cot45°-2所以,有3=1tan245°-2 (3)对粘性土和粉土而言,可以类似地推导出其极限平衡条件,为1=3tan245°+2+2ctan45°+2 (4)这可以从图6中的几何关系求得。作EO平行BC,通过最小主应力3的坐标点A作一圆与EO相切于E点,与轴交于I点。图6 粘性土与粉土极限平衡条件推导示意图由前可知OI=1'=3=tan245°+2下面找出IG与c的关系(G点为最大主应力坐标点)。由图中角度关系可知EBD为等腰三角形,ED=BD=c,DEB=45°-2,则有EB=2csi
8、n45°+2=IF在GIF中GI=IFcos45°+2=2csin45°+2cos45°+2=2ctan45°+2而且 OG=OI+IG所以 1=3tan245°+2+2ctan45°+2同理可以证明 3=1tan245°-2+2ctan45°-2 (5)还可以证明sin=1-31+3+2ccot (6)1=31+sin1-sin+2ccos1-sin或3=11-sin1+sin-2ccos1+sin由图5的几何关系可以求得剪切面(破裂面)与大主应力面的夹角关系,因为 2=90°+ (7)所以
9、=45°+2 (8)即剪切破裂面与最大主应力1作用平面的夹角为=45°+2(共轭剪切面)。由此可见,土与一般连续性材料(如钢、混凝土等)不同,是一种具有内摩擦强度的材料。其剪切破裂面不产生于最大剪应力面,而是与最大剪应力面成/2的夹角。如果土质均匀,且试验中能保证试件内部的应力、应变均匀分布,则试件内将会出现两组完全对称的破裂面(图7)。图7 土的破裂面确定式(2)至式(8)都是表示土单元体达到极限平衡时(破坏时)主应力的关系,这就是莫尔库伦理论的破坏准则,也是土体达到极限平衡状态的条件,故而,我们也称之为极限平衡条件。理论分析和试验研究表明,在各种破坏理论中,对土最适合的是莫尔库伦强度理论。总结莫尔库伦强度理论,可以表述为以下三个要点:(1)剪切破裂面上,材料的抗剪强度是法向应力的函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何与家教签订2025年的合同或协议
- 2025合作伙伴协议合同范本
- 2025年个人影像技术制作的合同范本示例
- 《生育与健康》课件
- 2025购销合同范本3
- 2025货车买卖合同样本模板
- 2025年度机械设备采购合同专业版
- 2025国内租赁合同模板
- 《课件传播的途径与策略》
- 诺贝尔生平创见课件
- 青马工程笔试试题及答案
- 豆粕交易合同协议
- 边缘计算与5G融合技术研究-全面剖析
- 8.1薪火相传的传统美德 同步课件 -2024-2025学年统编版道德与法治七年级下册
- 项目设计安全管理制度
- 飞机的纵向静稳定性飞行原理课件
- 电子化采购招投标平台系统建设项目解决方案
- 磁分离技术在天然气管道黑粉处理中应用的研究与效果分析
- 城市园林绿化养护管理服务投标方案(技术方案)
- 小学京剧知识
- 2025年广东省深圳市福田区5校中考一模历史试题(原卷版+解析版)
评论
0/150
提交评论