量子多体理论的Hartree-Fock_近似_第1页
量子多体理论的Hartree-Fock_近似_第2页
量子多体理论的Hartree-Fock_近似_第3页
量子多体理论的Hartree-Fock_近似_第4页
量子多体理论的Hartree-Fock_近似_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、量子多体理论中的Hartree-Fock近似邢玉恒(扬州大学 物理科学与技术学院 M14336我们知道,Hartree-Fock方程又简称为HF方程是一个应用变分法计算多电子体系波函数的方程,是量子化学中最重要的方程之一,基于分子轨道理论的所有量子化学计算方法都是以HF方程为基础的,鉴于分子轨道理论在现代量子化学中的广泛应用,HF方程可以被称作现代量子化学的基石。HF方程的基本思路为:多电子体系波函数是由体系分子轨道波函数为基础构造的斯莱特行列式,而体系分子轨道波函数是由体系中所有原子轨道波函数经过线性组合构成的,那么不改变方程中的算子和波函数形式,仅仅改变构成分子轨道的原子轨道波函数系数,便

2、能使体系能量达到最低点,这一最低能量便是体系电子总能量的近似,而在这一点上获得的多电子体系波函数便是体系波函数的近似。在量子力学中,关于相互作用的量子力学系集的讨论的出发点是哈密顿函数的基态,在中,N个粒子中每一个占据一个确定的单粒子态,因此它的运动与其他粒子无关。这个情况明显的将被粒子间的相互作用修改;尽管如此,实验事实是,对于许多不同的系统,例如:金属、原子和核子,这种单粒子描述方法是一个非常好的近似。因此一个自然的方法就是保留单粒子图像,而认为各个粒子是在一个单粒子势中运动,这个势来自这个粒子与其它粒子的平均相互作用。于是,这个单粒子能量应该是未微扰能量加上对所有其它粒子占据的态进行了平

3、均的相互作用势能。这样,作为第一级近似,我们可以只保留对正规自能的第一级贡献,但是这样的计算不是完全自洽的。考虑处于静态的且与自旋无关的外势场中的系统,例如,金属或原子中的电子,外势场破坏了空间均匀性,在绝热近似下,总的哈密顿量, 这里为简单起见,认为粒子间相互作用势与自旋无关相互作用的存在给求解带来困难,只能借助近似程序变分原理为在约束 下求的极值,即 其解为 为乘子求变分的严格极值等于解多体问题是无希望的,然而可以在某条件下选定的子空间上求变分极值,虽然结果不是严格的,但在数学上是可行的。取一组正交归一完备的单粒子态,设试探函数为 将算符2-1也表为的二次量子化表象 其中在坐标表象中的 下

4、面计算 ,先计算矩阵元 于是 变分约束条件相当于 上式乘以拉氏乘子,对变分,得方程 换到坐标表象 左端第一项是电子的动能加上晶体势,第二项是其它的粒子对粒子的平均库伦势,称直接库伦作用,第三项是泡利原理引起的交换库伦相互作用。方程是非线性的。非定域的,但是自伴的。在某些条件(如长程势)交换项是不重要的。可以略去,这就是哈特利近似。方程简化为 其中有效势 由于方程是自伴的,因而其解是正交的。但是方程并没有给出真正的定态,特别是 参量的意义可以从定理看出:表示从个粒子体系中取出粒子时体系的能量降低值。对于一般的外势,Hartree-Fock方程很难解出,因为单粒子波函数和能量两者都必须自洽的定出,对于均匀系统,为零,正规自能取形式,这些方程就变的简单的多了,容易验证平面波满足自洽的要求,相应的自洽的单粒子能量成为。基态能量归

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论