面板数据模型与应用张晓彤_第1页
面板数据模型与应用张晓彤_第2页
面板数据模型与应用张晓彤_第3页
面板数据模型与应用张晓彤_第4页
面板数据模型与应用张晓彤_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、面板数据模型与应用张晓峒中国数量经济学会常务理事,学术委员会委员南开大学数量经济学专业博士生导师xttfyt,nkeviews最近新书:1Badi H. Baltagi, Econometric Analysis of Panel Data, John Wiley & Sons, 2005.2Jeffrey M. Wooldridge, Econometric Analysis of Cross Section and Panel Data, 3Cheng Hsiao,Analysis of Panel Data, CambridgeUniversity Press, 2003.4Ma

2、nuel Arellano, Panel Data Econometrics (Advanced Texts in Econometrics), 2003.5. Edward W. Frees, Longitudinal and Panel Data: Analysis and Applications in the Social Sciences, 2004.6谢识予 朱宏鑫 编著,高级计量经济学,2005-57童光荣,计量经济学,武汉大学出版社2006-3学术会议:1. 13th International Conference on Panel Data, Faculty of Econ

3、omics, & Robinson College, University of Cambridge, Cambridge, UK, 7-9 July 20061面板数据定义panel data的中译:面板数据、桌面数据、平行数据、纵列数据、时间序列截面数据、混合数据(pool data)、固定调查对象数据。面板数据定义(1)面板数据定义为相同截面上的个体在不同时点的重复观测数据。(2)称为纵向变量序列(个体)的多次测量。面板数据从横截面(cross section)看,是由若干个体(entity, unit, individual)在某一时点构成的截面观测值,从纵剖面(longitu

4、dinal section)看每个个体都是一个时间序列。图1 N=7,T=50的面板数据示意图面板数据用双下标变量表示。例如yi t, i= 1, 2, , N; t = 1, 2, , Ti对应面板数据中不同个体。N表示面板数据中含有N个个体。t对应面板数据中不同时点。T表示时间序列的最大长度。若固定t不变,yi ., ( i= 1, 2, , N)是横截面上的N个随机变量;若固定i不变,y. t, (t = 1, 2, , T)是纵剖面上的一个时间序列(个体)。这里所讨论的面板数据主要指时期短而截面上包括的个体多的面板数据。案例1(file:panel02):1996-2002年中国东北、

5、华北、华东15个省级地区的居民家庭固定价格的人均消费(CP)和人均收入(IP)数据见file:panel02。数据是7年的,每一年都有15个数据,共105组观测值。人均消费和收入两个面板数据都是平衡面板数据,各有15个个体。人均消费和收入的面板数据从纵剖面观察分别见图2和图3。从横截面观察分别见图4和图5。横截面数据散点图的表现与观测值顺序有关。图4和图5中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。图2 15个省级地区的人均消费序列(纵剖面)图3 15个省级地区的人均收入序列(file:5panel02)图4 7个时点人均消费横截面数据(含15个地区) 图5 7个时点人均收入

6、横截面数据(含15个地区)(每条连线数据表示同一年度15个地区的消费值) (每条连线数据表示同一年度15个地区的收入值)用CP表示消费,IP表示收入。AH, BJ, FJ, HB, HLJ, JL, JS, JX, LN, NMG, SD, SH, SX, TJ, ZJ分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。图6 人均消费对收入的面板数据散点图(15个时间序列叠加)图7 人均消费对收入的面板数据散点图(7个截面叠加)图8 北京和内蒙古1996-2002年消费对收入散点图 图9 1996和2002年1

7、5个地区的消费对收入散点图2面板数据模型分类用面板数据建立的模型通常有3种,即混合回归模型、固定效应回归模型和随机效应回归模型。2.1 混合回归模型(Pooled model)。如果一个面板数据模型定义为,yit = a+Xit 'b+eit, i= 1, 2, , N; t = 1, 2, , T (1)其中yit为被回归变量(标量),a表示截距项,Xit为k´1阶回归变量列向量(包括k个回归量),b为k´1阶回归系数列向量,eit为误差项(标量)。则称此模型为混合回归模型。混合回归模型的特点是无论对任何个体和截面,回归系数a和b都相同。如果模型是正确设定的,解释

8、变量与误差项不相关,即Cov(Xit,eit) = 0。那么无论是N®¥,还是T®¥,模型参数的混合最小二乘估计量(Pooled OLS)都是一致估计量。2.2 固定效应回归模型(fixed effects regression model)。固定效应模型分为3种类型,即个体固定效应回归模型、时点固定效应回归模型和个体时点双固定效应回归模型。下面分别介绍。2.2.1个体固定效应回归模型(entity fixed effects regression model)如果一个面板数据模型定义为,yit = ai+Xit 'b+eit, i= 1, 2,

9、 , N; t = 1, 2, , T(3)其中ai是随机变量,表示对于i个个体有i个不同的截距项,且其变化与Xit有关系;yit为被回归变量(标量),eit为误差项(标量),Xit为k´1阶回归变量列向量(包括k个回归量),b为k´1阶回归系数列向量,对于不同个体回归系数相同,则称此模型为个体固定效应回归模型。ai作为随机变量描述不同个体建立的模型间的差异。因为ai是不可观测的,且与可观测的解释变量Xit的变化相联系,所以称(3)式为个体固定效应回归模型。个体固定效应回归模型也可以表示为yit = a1+a2D2 + +aNDN+Xit 'b+eit, t = 1

10、, 2, , T (4)其中Di=设定个体固定效应回归模型的原因如下。假定有面板数据模型yit = b0+b1xit+b2 zi +eit, i= 1, 2, , N; t = 1, 2, , T (5)其中b0为常数,不随时间、截面变化;zi表示随个体变化,但不随时间变化的难以观测的变量。上述模型可以被解释为含有N个截距,即每个个体都对应一个不同截距的模型。令ai= b0+b2 zi,于是(5)式变为yit = ai+b1xit+eit, i= 1, 2, , N; t = 1, 2, , T (6)这正是个体固定效应回归模型形式。对于每个个体回归函数的斜率相同(都是b1),截距ai却因个体

11、不同而变化。可见个体固定效应回归模型中的截距项ai中包括了那些随个体变化,但不随时间变化的难以观测的变量的影响。ai是一个随机变量。以案例1为例,省家庭平均人口数就是这样的一个变量。对于短期面板来说,这是一个基本不随时间变化的量,但是对于不同的省份,这个变量的值是不同的。以案例1为例(file:panel02)得到的个体固定效应模型估计结果如下:注意:个体固定效应模型的EViwes输出结果中没有公共截距项。图10 个体固定效应回归模型的估计结果2.2.2时点固定效应回归模型(time fixed effects regression model)如果一个面板数据模型定义为,yit =gt+Xi

12、t 'b+eit, i = 1, 2, , N (7)其中gt是模型截距项,随机变量,表示对于T个截面有T个不同的截距项,且其变化与Xit有关系;yit为被回归变量(标量),eit为误差项(标量),满足通常假定条件。Xit为k´1阶回归变量列向量(包括k个回归变量),b为k´1阶回归系数列向量,则称此模型为时点固定效应回归模型。时点固定效应回归模型也可以加入虚拟变量表示为yit =g1 +g2W2 + +g TWT+Xit 'b+eit, i = 1, 2, , N; t = 1, 2, , T (8)其中Wt=设定时点固定效应回归模型的原因。假定有面板数据

13、模型yit = b0+b1xit+b2 zt +eit, i= 1, 2, , N; t = 1, 2, , T(9)其中b0为常数,不随时间、截面变化;zt表示随不同截面(时点)变化,但不随个体变化的难以观测的变量。上述模型可以被解释为含有T个截距,即每个截面都对应一个不同截距的模型。令gt= b0+b2 zt,于是(9)式变为yit = gt+b1xit+eit, i= 1, 2, , N; t = 1, 2, , T(10)这正是时点固定效应回归模型形式。对于每个截面,回归函数的斜率相同(都是b1),gt却因截面(时点)不同而异。可见时点固定效应回归模型中的截距项gt包括了那些随不同截面

14、(时点)变化,但不随个体变化的难以观测的变量的影响。gt是一个随机变量。以案例1为例,“全国零售物价指数”就是这样的一个变量。对于不同时点,这是一个变化的量,但是对于不同省份(个体),这是一个不变化的量。图112.2.3个体时点双固定效应回归模型(time and entity fixed effects regression model)如果一个面板数据模型定义为,yit = ai+gt+Xit'b+eit, i= 1, 2, , N; t = 1, 2, , T (11)其中yit为被回归变量(标量);ai是随机变量,表示对于N个个体有N个不同的截距项,且其变化与Xit有关系;gt

15、是随机变量,表示对于T个截面(时点)有T个不同的截距项,且其变化与Xit有关系;Xit为k´1阶回归变量列向量(包括k个回归量);b为k´1阶回归系数列向量;eit为误差项(标量)满足通常假定(eitêXit,ai,gt) = 0;则称此模型为个体时点固定效应回归模型。个体时点固定效应回归模型还可以表示为,yit = a1+a2D2 +aNDN+g2W2 +g TWT+Xit 'b+eit, t = 1, 2, , (12)其中Di= (13)Wt= (14)如果模型形式是正确设定的,并且满足模型通常的假定条件,对模型(12)进行混合OLS估计,全部参数估

16、计量都是不一致的。正如个体固定效应回归模型可以得到一致的、甚至有效的估计量一样,一些计算方法也可以使个体时点双固定效应回归模型得到更有效的参数估计量。以例1为例得到的截面、时点固定效应模型估计结果如下:图12回归系数为0.67,这与个体固定效应回归模型给出的估计结果0.70基本一致。在上述三种固定效应回归模型中,个体固定效应回归模型最为常用。2.3随机效应模型对于面板数据模型yit = ai+Xit'b+eit, i= 1, 2, , N; t = 1, 2, , T (15)如果ai为随机变量,其分布与Xit无关;yit为被回归变量(标量),eit为误差项(标量),Xit为k

17、0;1阶回归变量列向量(包括k个回归量),b为k´1阶回归系数列向量,对于不同个体回归系数相同,这种模型称为个体随机效应回归模型(随机截距模型、随机分量模型)。其假定条件是ai iid(a, sa2),eit iid(0, se2)都被假定为独立同分布,但并未限定何种分布。 同理也可定义时点随机效应回归模型和个体时点随机效应回归模型,但个体随机效应回归模型最为常用。个体随机效应模型又称为等相关模型(Equicorrelated model)。原因如下。随机效应模型可以看作是混合模型的特例。对于个体随机效应回归模型yit = ai+Xit 'b+eit,可以把ai并入误差项ei

18、t。模型改写为yit =Xit 'b+ (ai+eit) = Xit 'b+uit (16)其中uit = (ai+eit)。如果有ai(a, sa2),eit(0, se2)成立,那么,Cov(uit,uis) = Cov(ai+eit)(ai+eis) = (17)因为对于t¹s,有r(uit,uis) = = (18)相关系数r(uit,uis)与 (ts) 即相隔期数长短无关。所以个体随机效应模型也称作等相关模型,或者可交换误差模型(exchangeable model)。对于个体随机效应模型,E(aiêXit) =a,则有,E(yitêx

19、it) =a+Xit'b,对yit可以识别。所以随机效应模型参数的混合OLS估计量具有一致性,但不具有有效性。注意:“固定效应模型”这个术语用得并不十分恰当,容易产生误解。其实固定效应模型应该称之为“相关效应模型”,而随机效应模型应该称之为“非相关效应模型”。因为固定效应模型和随机效应模型中的ai都是随机变量。3面板数据模型估计方法面板数据模型中b的估计量既不同于截面数据估计量,也不同于时间序列估计量,其性质随设定固定效应模型是否正确而变化。3.1 混合最小二乘(Pooled OLS)估计混合OLS估计方法是在时间上和截面上把NT个观测值混合在一起,然后用OLS法估计模型参数。给定混合

20、模型yit = a+Xit 'b+eit, i= 1, 2, , N; t = 1, 2, , T (19)如果模型是正确设定的,且解释变量与误差项不相关,即Cov(Xit,eit) = 0。那么无论是N®¥,还是T®¥,模型参数的混合最小二乘估计量都具有一致性。对混合模型通常采用的是混合最小二乘(Pooled OLS)估计法。然而,在误差项服从独立同分布条件下由OLS法得到的方差协方差矩阵,在这里通常不会成立。因为对于每个个体i及其误差项来说通常是序列相关的。NT个相关观测值要比NT个相互独立的观测值包含的信息少。从而导致误差项的标准差常常被低

21、估,估计量的精度被虚假夸大。如果模型存在个体固定效应,即ai与Xit相关,那么对模型应用混合OLS估计方法,估计量不再具有一致性。解释如下:假定模型实为个体固定效应模型yit = ai+ Xit 'b+eit,但却当作混合模型来估计参数,则模型可写为yit = a+Xit 'b+ (ai-a +eit) = a+ Xit 'b+uit (20)其中uit = (ai-a +eit)。因为ai与Xit相关,也即uit与Xit相关,所以个体固定效应模型的参数若采用混合OLS估计,估计量不具有一致性。3.2平均(between)OLS估计平均OLS估计法的步骤是首先对面板数据

22、中的每个个体求平均数,共得到N个平均数(估计值)。然后利用yit和Xit的N组观测值估计参数。以个体固定效应回归模型yit = ai+Xit 'b+eit (21)为例,首先对面板中的每个个体求平均数,从而建立模型= ai+'b+, i= 1, 2, , N (22)其中=,=,=,i= 1, 2, , N。变换上式得= a+'b+(a i- a +), i= 1, 2, , N (23)上式称作平均模型。对上式应用OLS估计,则参数估计量称作平均OLS估计量。此条件下的样本容量为N,(T=1)。如果与(a i- a +)相互独立,a和b的平均OLS估计量是一致估计量。

23、平均OLS估计法适用于短期面板的混合模型和个体随机效应模型。对于个体固定效应模型来说,由于ai和Xit相关,也即ai和相关,所以,回归参数的平均OLS估计量是非一致估计量。3.3 离差(within)OLS估计 对于短期面板数据,离差OLS估计法的原理是先把面板数据中每个个体的观测值变换为对其平均数的离差观测值,然后利用离差数据估计模型参数。具体步骤是,对于个体固定效应回归模型yit = ai+Xit'b+eit (24)中的每个个体计算平均数,可得到如下模型,= ai+'b+其中、的定义见(22)式。上两式相减,消去了ai,得yit-= (Xit-)'b+ (eit

24、-)此模型称作离差数据模型。对上式应用OLS估计,所得b的估计量称作离差OLS估计量。对于个体固定效应回归模型,b的离差OLS估计量是一致估计量。如果eit还满足独立同分布条件,b的离差OLS估计量不但具有一致性而且还具有有效性。如果对固定效应ai感兴趣,也可按下式估计。=-' (27)个体固定效应回归模型的估计通常采用的就是离差(within)OLS估计法。在短期面板条件下,即便ai的分布、以及ai和Xit的关系都已知到,ai的估计量仍不具有一致性。当个体数N不大时,可采用OLS虚拟变量估计法估计ai和b。离差OLS估计法的主要缺点是不能估计非时变回归变量构成的面板数据模型。比如Xi

25、t =Xi(非时变变量),那么有= Xi,计算离差时有Xi-= 0。3.4一阶差分(first difference)OLS估计 在短期面板条件下,一阶差分OLS估计就是对个体固定效应模型中的回归量与被回归量的差分变量构成的模型的参数进行OLS估计。具体步骤是,对个体固定效应回归模型yit = ai+Xit'b+eit取其滞后一期关系式yit-1 = ai+Xit-1'b+eit-1上两式相减,得一阶差分模型(ai被消去)yit-yit-1 = (Xit-Xit-1)'b+ (eit -eit-1) , i= 1, 2, , N; t = 1, 2, , T对上式应用O

26、LS估计得到的b的估计量称作一阶差分OLS估计量。尽管ai不能被估计,b的估计量是一致估计量。 在T>2,eit独立同分布条件下得到的b的一阶差分OLS估计量不如离差OLS估计量有效。3.5随机效应(random effects)估计法(可行GLS(feasible GLS)估计法)有个体固定效应模型yit = ai+Xit'b+eiai,eit服从独立同分布。对其作如下变换yit-= (1-)m + (Xit-)'b+vit (29)其中vit = (1-)ai+ (eit -)渐近服从独立同分布,l = 1-,应用OLS估计,则所得估计量称为随机效应估计量或可行GLS

27、估计量。当=0时,(29)式等同于混合OLS估计;当=1时,(29)式等同于离差OLS估计。 对于随机效应模型,可行GLS估计量不但是一致估计量,而且是有效估计量,但对于个体固定效应模型,可行GLS估计量不是一致估计量。面板数据模型估计量的稳健统计推断。在实际的经济面板数据中,N个个体之间相互独立的假定通常是成立的,但是每个个体本身却常常是序列自相关的,且存在异方差。为了得到正确的统计推断,需要克服这两个因素。对于第i个个体,当N®¥,Xi×的方差协方差矩阵仍然是T´T有限阶的,所以可以用以前的方法克服异方差。采用GMM方法还可以得到更有效的估计量。EV

28、iwes中对随机效应回归模型的估计采用的就是可行(feasible )GLS估计法。4面板数据模型设定检验方法4.1 F检验先介绍原理。F统计量定义为F = F( m , T k ) (30)其中SSEr表示施加约束条件后估计模型的残差平方和,SSEu表示未施加约束条件的估计模型的残差平方和,m表示约束条件个数,T表示样本容量,k表示未加约束的模型中被估参数的个数。在原假设“约束条件真实”条件下,F统计量渐近服从自由度为( m , T k )的F分布。以检验个体固定效应回归模型为例,介绍F检验的应用。建立假设H0:ai=a。模型中不同个体的截距相同(真实模型为混合回归模型)。H1:模型中不同个

29、体的截距项ai不同(真实模型为个体固定效应回归模型)。F统计量定义为:F=(31)其中SSEr表示约束模型,即混合估计模型的残差平方和,SSEu表示非约束模型,即个体固定效应回归模型的残差平方和。非约束模型比约束模型多了N-1个被估参数。以案例1为例,已知SSEr= 4824588,SSEu= 4028843,F= = 8.1(32)F0.05(6, 87) = 1.8因为F= 8.1> F0.05(14, 89) = 1.8,推翻原假设,比较上述两种模型,建立个体固定效应回归模型更合理。4.2 Hausman检验对同一参数的两个估计量差异的显著性检验称作Hausman检验,简称H检验。

30、H检验由Hausman1978年提出,是在Durbin(1914)和Wu(1973)基础上发展起来的。所以H检验也称作Wu-Hausman检验,和Durbin-Wu-Hausman检验。先介绍Hausman检验原理例如在检验单一方程中某个回归变量(解释变量)的内生性问题时得到相应回归参数的两个估计量,一个是OLS估计量、一个是2SLS估计量。其中2SLS估计量用来克服回归变量可能存在的内生性。如果模型的解释变量中不存在内生性变量,那么OLS估计量和2SLS估计量都具有一致性,都有相同的概率极限分布。如果模型的解释变量中存在内生性变量,那么回归参数的OLS估计量是不一致的而2SLS估计量仍具有一

31、致性,两个估计量将有不同的概率极限分布。更一般地,假定得到q个回归系数的两组估计量和,则H检验的零假设和被择假设是:H0: plim(-) = 0H1: plim(-) ¹ 0假定两个估计量的差作为统计量也具有一致性,在H0成立条件下,(-) N(0, VH)其中VH是(-)的极限分布方差矩阵。则H检验统计量定义为H = (-)' (N-1)-1(-)®c2(q) (33)其中(N-1)是(-)的估计的方差协方差矩阵。在H0成立条件下,H统计量渐近服从c2(q)分布。其中q表示零假设中约束条件个数。H检验原理很简单,但实际中VH的一致估计量并不容易。一般来说,N-1

32、= Var(-) = Var()+Var()-2Cov(,) (34)Var(),Var()在一般软件计算中都能给出。但Cov(,)不能给出。致使H统计量(33)在实际中无法使用。实际中也常进行如下检验。H0:模型中所有解释变量都是外生的。H1:其中某些解释变量都是内生的。在原假设成立条件下,H = (-)' (-)-1 (-)c2(k) (36)其中和分别是对Var()和Var()的估计。与(34)式比较,这个结果只要求计算Var()和Var(),H统计量(36)具有实用性。当q表示一个标量时,H统计量(36)退化为, H = c2(1)其中和分别表示和的样本方差值。H检验用途很广。

33、可用来做模型丢失变量的检验、变量内生性检验、模型形式设定检验、模型嵌套检验、建模顺序检验等。下面详细介绍面板数据中利用H统计量进行模型形式设定的检验。假定面板模型的误差项满足通常的假定条件,如果真实的模型是随机效应回归模型,那么b的离差OLS估计量和随机GLS法估计量都具有一致性。如果真实的模型是个体固定效应回归模型,则参数b的离差OLS法估计量是一致估计量,但随机GLS估计量是非一致估计量。可以通过H统计量检验(-)的非零显著性,检验面板数据模型中是否存在个体固定效应。原假设与备择假设是H0: 个体效应与回归变量无关(个体随机效应回归模型)H1: 个体效应与回归变量相关(个体固定效应回归模型

34、)例:=0.7747,s() = 0.00868(计算结果对应图15);=0.7246,s() =0.0106(计算结果取自EViwes个体固定效应估计结果) H = = 68.4因为H =68.4 > c20.05 (1) = 3.8,所以模型存在个体固定效应。应该建立个体固定效应回归模型。5面板数据建模案例分析图13 混合估计散点图图14 平均估计散点图以案例1为例,图13是混合估计对应数据的散点图。回归结果如下CP = 129.63 + 0.76 IP(2.0) (79.7)图14是平均值数据散点图。先对数据按个体求平均数和。然后用15组平均值数据回归,= -40.88+0.79(

35、-0.3) (41.1)图15离差估计散点图 图16差分估计散点图图15是离差数据散点图。先计算CP、IP分别对、的离差数据,然后用离差数据计算OLS回归。CPM = 0.77IPM (90)图16是一阶差分数据散点图。先对CP、IP各个体作一阶差分,然后用一阶差分数据回归。DCP = 0.71 DIP(24)案例2(file:5panel01a)美国公路交通事故死亡人数与啤酒税的关系研究见Stock J H and M W Watson, Introduction to Econometrics, Addison Wesley, 2003第8章。美国每年有4万高速公路交通事故,约1/3涉及酒

36、后驾车。这个比率在饮酒高峰期会上升。早晨13点25%的司机饮酒。饮酒司机出交通事故数是不饮酒司机的13倍。现有19821988年48个州共336组美国公路交通事故死亡人数(number)与啤酒税(beertax)的数据。图171982年数据散点图(File: 5panel01a-graph01) 图181988年数据散点图(File:5panel01a- graph07)1982年数据的估计结果(散点图见图17)1982 = 2.01 + 0.15 beertax1982 (0.15) (0.13)1988年数据的估计结果(散点图见图18)1988 = 1.86 + 0.44 beertax1

37、988 (0.11) (0.13)图19 混合估计共336个观测值。估计结果仍不可靠。(file:5panel01b)19821988年混合数据估计结果(散点图见图19)19821988 = 1.85 + 0.36beertax19821988 (42.5) (5.9) SSE=98.75显然以上三种估计结果都不可靠(回归参数符号不对)。原因是啤酒税之外还有许多因素影响交通事故死亡人数。个体固定效应估计结果(散点图见图1)it = 2.375 +- 0.66beertax it (24.5) (-3.5) SSE=10.35双固定效应估计结果(散点图见图1)it = 2.37 +- 0.65b

38、eertax it (23.3) (-3.25) SSE=9.92以上两种回归系数的估计结果非常近似。下面的F检验证实参数-0.66和0.65比较合理。用F检验判断应该建立混合模型还是个体固定效应模型。H0:ai=a。混合回归模型(约束截距项为同一参数)。H1:ai各不相同。个体固定效应回归模型(截距项任意取值)F= (以EViwes5.0计算自由度) = 50.8F0.05(48, 286) = 1.2因为F= 50.8 > F0.05(14, 89) = 1.2,推翻原假设,比较上述两种模型,建立个体固定效应回归模型更合理。下面讨论面板差分数据的估计结果。利用1988年和1982年数

39、据的差分数据得估计结果(散点图见图3)1988 -1982 = -0.072 - 1.04 (beertax1988 - beertax1982)(0.065) (0.36)图20差分数据散点图(File:5panel01a- graph08)6面板数据的单位根检验下面介绍11种检验方法。6.1 LLC(Levin-Lin-Chu,2002)检验(适用于相同根(common root)情形)LLC检验原理是仍采用ADF检验式形式。但使用的却是和的剔出自相关和确定项影响的、标准的代理变量。具体做法是(1)先从Dyit和yit中剔出自相关和确定项的影响,并使其标准化,成为代理变量。(2)用代理变量

40、做ADF回归,=r + vit。LLC修正的渐近服从N(0,1)分布。详细步骤如下:H0: r = 0(有单位根);H1: r < 0。LLC检验为左单端检验。LLC检验以如下ADF检验式为基础:Dyit = ryi t-1 +Dyi t-j +Zit'f+eit, i= 1, 2, , N; t = 1, 2, , T (38)其中Zit表示外生变量(确定性变量)列向量,f表示回归系数列向量。(1)估计代理变量。首先确定附加项个数ki,然后作如下两个回归式,Dyit = Dyi t-j + Zit'+yit-1 = Dyi t-j + Zit'+移项得= Dyi

41、t-Dyi t-j - Zit'=yit-Dyi t-j - Zit'把和标准化,= /si=/si其中si, i= 1, 2, , N是用(38)式对每个个体回归时得到的残差的标准差,从而得到Dyit和yit-1的代理变量和。(2)用代理变量和作如下回归,=r+ vitLLC证明,上式中估计量的如下修正的统计量渐近地服从标准正态分布。= ®N (0, 1)其中表示标准的t统计量;N是截面容量;=T-1,(T为个体容量);SN是每个个体长期标准差与新息标准差之比的平均数;是误差项vit的方差;是标准误差;和分别是均值和标准差的调整项。见图21输出结果,LLC=9.7

42、> -1.65,所以存在单位根。图21LLC检验的EViews 5.0输出结果(部分)EViews 5.0操作步骤:在面板数据窗口点击View选Unit Root Test功能。在Test Type中选Common root Levin, Lin, Chu。6.5 Breitung检验(2002)(适用于相同根(common root)情形)Breitung检验法与LLC检验法类似。先从和中剔出动态项,然后标准化,再退势,最后用ADF回归*=r* + vit。检验单位根。用每个个体建立的单位根检验式的误差项之间若存在同期相关,上述面板数据的单位根检验方法都不再适用。主要是统计量的分布发生

43、变化,检验功效降低。为此提出一些个体同期相关面板数据的单位根检验方法。6.2Hadri检验(适用于相同根(common root)情形)Hadri检验与KPSS检验相类似。原假设是面板中的所有序列都不含有单位根。计算步骤是用原面板数据的退势序列(残差)建立LM统计量。退势回归是yit = a1 +a2 t + uit利用上式中的残差计算如下LM统计量, (39)其中是残差累积函数,是频率为零时的残差谱密度。Hadri给出,在一般假定条件下Z = ®N(0, 1) (40)其中a=1/6,b=1/45,LM由(39)式计算。Hadri检验的原假设是没有单位根。以案例1为例,图22给出检验结果。EViews给出假定同方差和克服异方差两种情形下的Z统计量。因为Z渐近服从正态分布,Z = 7.5和7.6落在拒绝域,结论是存在共同单位根。图22Hadri检验的EViews 5.0输出结果(部分)EViews 5.0操作步骤:在面板数据窗口点击View选Unit Root Test功能。在Test Type中选Common root Hadri。下面介绍适用于不同根(individual unit root)情形的面板数据单位根检验方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论