



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆的切点弦方程的解法探究在理解概念熟记公式的基础上,如何正确地多角度观察、分析问题,再运用所学知识解决问题,是解题的关键所在。本文仅通过一个例题,圆的部分的基本题型之一,分别从不同角度进行观察,用不同的知识点和九种不同的解法,以达到介绍如何观察、分析、解决关于圆的切点弦的问题。一、预备知识:1、在标准方程下过圆上一点的切线方程为: ;在一般方程 () 下过圆上一点的切线方程为: 。2、两相交圆 ()与 () 的公共弦所在的直线方程为: 。3、过圆 ()外一点作圆的切线,其切线长公式为:。4、过圆 ()外一点作圆的切线,切点弦AB所在直线的方程为:(在圆的标准方程下的形式); (在圆的一般方程下
2、的形式)。二、题目 已知圆外一点P(-4,-1),过点P作圆的切线PA、PB,求过切点A、B的直线方程。三、解法解法一:用判别式法求切线的斜率如图示1,设要求的切线的斜率为(当切线的斜率存在时),那么过点P(-4,-1)的切线方程为: 即 由 消去并整理得 令 解得 或将或分别代入解得 、从而可得 A(,)、B(1,-1),再根据两点式方程得直线AB的方程为:。解法二:用圆心到切线的距离等于圆的半径求切线的斜率如图示1,设要求的切线的斜率为(当切线的斜率存在时),那么过点P(-4,-1)的切线方程为: 即 由圆心C(1,2)到切线的距离等于圆的半径3,得 解得 或所以切线PA、PB的方程分别为
3、:和从而可得切点 A(,)、B(1,-1),再根据两点式方程得直线AB的方程为:。解法三:用夹角公式求切线的斜率如图示1,设要求的切线的斜率为,根据已知条件可得|PC|= ,在中,|PA|=5,由夹角公式,得 解得 或所以切线PA、PB的方程分别为:和从而可得切点 A(,)、B(1,-1),再根据两点式方程得直线AB的方程为:。解法四:用定比分点坐标公式求切点弦与连心线的交点如图示1,根据已知条件可得|PC|= ,在中,|PA|=5,AHPC,从而可得 由定比分点公式,得 H(,)又因为 再根据点斜式方程得直线AB的方程为:。解法五:将切点弦转化为两相交圆的公共弦的问题之一如图示2,因为|PA
4、|=|PB|,所以直线AB就是经过以P为圆心|PA|为半径的圆C与圆的交点的直线,由切线长公式得|PA|=所以圆C的方程为 根据两圆的公共弦所在的直线方程,得 即 直线AB的方程为:。解法六:将切点弦转化为两相交圆的公共弦的问题之二如图示3,因为PACA,PBCB,所以P、A、C、B四点共圆,根据圆的直径式方程,以P(-4,-1)、C(1,2)为直径端点的圆的方程为即 根据两圆的公共弦所在的直线方程,得 即 直线AB的方程为:。解法七:运用圆的切线公式及直线方程的意义设切点A、B的坐标分别为、,根据过圆上一点的切线方程,得切线PA、PB的方程分别为 和因为P(-4,-1)是以上两条切线的交点,将点P的坐标代入并整理,得 由式知,直线 经过两点A、B,所以,直线AB的方程为:。解法八:直接运用圆的切点弦方程因为P(-4,-1)是圆外一点,根据切点弦所在直线的方程 得整理得,直线AB的方程为:。解法九:运用参数方程的有关知识如图4,将圆的普通方程 化为参数方程: (其中为参数)设切点A的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃酒泉敦煌研究院季节性工作人员招聘考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025北京平谷区纪委区监委所属事业单位招聘9人考前自测高频考点模拟试题及完整答案详解
- 2025内蒙古选聘自治区特邀行政执法社会监督员考前自测高频考点模拟试题及答案详解(全优)
- 2025河南郑州市第六人民医院招聘模拟试卷及答案详解(名师系列)
- 2025年琼中县教育局赴海师公开招聘教师和校医49名模拟试卷(含答案详解)
- 2025呼伦贝尔市扎赉诺尔区中蒙医院招聘12名聘用合同制工作人员考前自测高频考点模拟试题及答案详解(夺冠)
- 2025贵州习水县中医医院隆兴分院招聘见习人员考前自测高频考点模拟试题附答案详解(模拟题)
- 2025第十三届贵州人才博览会黔东南州企事业单位招聘838人考前自测高频考点模拟试题及参考答案详解一套
- 2025年中共昆明市委党校引进高层次人才(5人)考前自测高频考点模拟试题完整答案详解
- 2025广西百色市西林县供销合作社联合社招聘编外聘用人员1人模拟试卷及完整答案详解
- 护理敏感质量指标解读2025
- 隧道机电考核管理办法
- 饲料厂制粒工培训
- 大厂品牌活动策划方案
- 移动学习期刊论文
- 2025年事业单位公开招聘考试(E类)《综合应用能力西医临床》试卷真题及完整解析
- 公司事件事故管理制度
- 2024小学科学教师职称考试模拟试卷及参考答案
- Creo软件基础操作培训
- 农村房产放弃协议书
- 企业内部控制培训课件
评论
0/150
提交评论