已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Ch4、不定积分§1、不定积分的概念与性质1、 原函数与不定积分定义1:若,则称为的原函数。 连续函数一定有原函数; 若为的原函数,则也为的原函数;事实上, 的任意两个原函数仅相差一个常数。事实上,由,得故表示了的所有原函数,其中为的一个原函数。定义2:的所有原函数称为的不定积分,记为,积分号,被积函数,积分变量。显然2、 基本积分表(共24个基本积分公式)3、 不定积分的性质§2、不定积分的换元法一、 第一类换元法(凑微分法)1、例1、求不定积分2、例2、求不定积分3、 例4、求不定积分二、 第二类换元法1、三角代换例1、解:令,则原式=例2、解:令原式=例3、解:令,则原式= 例4、解:令,则 原式=例5、解:令,则原式= 例6、解:令,则原式=小结:中含有可考虑用代换2、无理代换例7、解:令原式=例8、解:令原式=例9、解:令原式=例10、解:令原式4、 倒代换例11、解:令原式 §3、分部积分法分部积分公式:,故 (前后相乘)(前后交换)例1、例2、例3、或解:令原式例4、或解:令原式例5、故例6、例7、§4、两种典型积分一、有理函数的积分有理函数可用待定系数法化为部分分式,然后积分。例1、将化为部分分式,并计算解:故或解: 例2、例3、例4、二、三角函数有理式的积分 对三角函数有理式积分,令, ,故,三角函数有理式积分即变成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产业技术联盟协议书
- 飞轮、电化学混合储能调频电站项目风险评估报告
- 休闲浴室转让协议书
- 隧道施工材料选择与使用方案
- 铺面装修住宿合同范本
- 企业房屋修建协议书
- 专利授权协议书范本
- 临时签订就业协议书
- 先付款发货合同协议
- 学前教育中的营养干预对儿童人力资本的积累
- 2024厂子转让合同范本
- G -B- 17378.4-2007 海洋监测规范 第4部分 海水分析(正式版)
- 医疗废物处理与感染预防培训
- GB/T 43959-2024锅炉火焰检测系统技术规范
- 九年级学生纪律整顿大会发言稿
- XFT 3004-2020 汽车加油加气站消防安全管理
- 泽布替尼胶囊-临床用药解读
- 城市轨道交通工程技术专业职业生涯规划
- JC∕T 185-2013 光学石英玻璃
- 众筹操作案例分析报告
- 防动物伤害安全教育课件
评论
0/150
提交评论