




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.初二数学教案:可化为一元一次方程的分式方程2一、教学目的1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.理解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的根底上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生纯熟掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的根本思想是把分式方程转化成整式方程,把未知问题转化成问题,从而浸透数学的转化思想.二、教学重点和难点1.教学重点:1可化为一元一次方程的分式方程的解法.2分式方程转化为整式方程的方法及其中的转化
2、思想.2.教学难点:理解解分式方程时产生增根的原因.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学手段演示法和同学练习相结合,以练习为主.五、教学过程一复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.2.解:1当 时,左边= ,右边=0,左边=右边,233、在本章开场我们曾提出一个问题,经过分析得到问题的量为两个分式: , 根据量间的关系列出方程:这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.二新课板书课题:板书:
3、分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断以下各式哪个是分式方程.投影1 ;2 ;3 ;4 ;5在学生答复的根底上指出1、2是整式方程,3是分式,45是分式方程.1、如何求解方程 ?先由同学讨论如何解这个方程.在同学讨论的根底上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.如何去掉?方程两边同乘最简公分母.解:两边同乘以最简公分母xx-6得90x-6=60x解这个整式方程得x=18.假如我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=18代入原方程左边=右边x=18是
4、原方程的解.2、如何解方程 ?此题可由学生讨论解决.解:方程两边同乘最简公分母x+1x-1,得整式方程x+1=2解整式方程,得x=1.x=1时原方程的解是否正确?检验:将x=1代入原方程,可知x=1使分式方程两边的分式分母均为零,这两个分式没意义,因此x=1不是原分式方程的解.原方程无解.讨论:1、2两题都是方程两边同除最简公分母将分式方程转化为整式方程,为什么2求出的x=1不是原方程的解,而我们又得到了x=1呢?分析:方程同解原理2指出:方程的两边都乘以不等于零的同一个数,所得的方程与原方程同解.在解1中,方程两边都乘以xx-6,接着求出x=18,而当x=18时,2x+5=216,所以相当于
5、方程两边都乘以160,因此所得的整式方程与原方程同解.在解2中,方程两边都乘以x+1x-1,接着求出x=1,相当于方程两边都乘以零,结果使原方程无意义,这样得到的整式方程与原方程不同解.像这样,在方程变形时,有时可能产生不合适原方程的根,这种根叫做原方程的增根.注意:由分式方程转化为一元一次方程过程中,要去分母就必须同乘一个整式,但整式可能为零,不能满足方程变换同解的原那么,就使得分式方程可能产生增根,因此解分式方程后就必须检验.由此可以想到,只要把求得的x的值代入所乘的整式即最简公分母,假设该式的值不等于零,那么是原方程的根;假设该式的值为零,那么是原方程的增根.如能保证求解过程正确,那么这
6、种验根方法比较简便.例1、解方程对于例题给学生示范做题的格式、步骤. 投影显示步骤格式解:方程两边同乘xx-2,约去分母,得5x-2=7x解这个整式方程,得x=5.检验:把x=-5代入最简公分母xx-2=350,x=-5是原方程的解.例2、解方程解:方程两边同乘最简公分母x-2,约去分母,得1=x-1-3x-2. -3这项不要忘乘解这个整式方程,得x=2.检验:当x=2时,代入最简公分母x-2=0,x=2是增根,原方程无解.注意:要求学生一定要严格按解题格式步骤完成.三总结解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.2.解这个整式方程.3.把整式方程的根代入
7、最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.四练习教材P.98中1由学生在黑板上写,老师订正.六、作业宋以后,京师所设小学馆和武学堂中的老师称谓皆称之为“教谕。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习。到清末,学堂兴起,各科老师仍沿用“教习一称。其实“教谕在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者那么谓“教授和“学正。“教授“学正和“教谕的副手一律称“训导。于民间,特别是汉代以后,对于在“校或“学中传授经学者也称为“经师。在一些特定的讲学场合,比方书院、皇室,也称老师为“院长、西席、讲席等。与当今“老师一称最接近的“老师概念,最早也要追溯至宋元时期。金代元好问?示侄孙伯安?诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。于是看,宋元时期小学老师被称为“老师有案可稽。清代称主考官也为“老师,而一般学堂里的先生那么称为“老师或“教习。可见,“老师一说是比较晚的事了。如今体会,“老师的含义比之“老师一说,具有资历和学识程度上较低一些的差异。辛亥革命后,老师与其他官员一样依法令任命,故又称“老师为“教员。教材P.101中1.七、板书设计要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 济南教编面试真题及答案
- 鸡西联考面试真题及答案
- 《口腔健康》课件
- 《教育传承者课件:永恒的孔子先生》
- 《色彩搭配深度解析课件(上)》
- 《建筑给排水工程施工》课件
- 广东计算机工程与应用单选题100道及答案
- 《淘宝天下》杂志推广策划
- 《千克的认识》课件
- 2025青海省考b类申论真题及答案
- 歌曲《wake》中英文歌词对照
- 传热学课后习题答案
- 工作面安全生产条件验收表
- 北航毕业设计论文模板
- 人工智能技术在医学领域的应用
- 妇幼智慧盆底中心建设方案-V1.1
- DB13(J)∕T 8057-2019 市政排水管渠工程施工质量验收标准
- 关于没收建筑物处置的调研报告
- 管廊、管架基础施工方案
- ment、tion、sion、ture、age结尾的名词
- S71200CB1241modbusRTU模块应用
评论
0/150
提交评论