版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元一次不等式组解题技巧一、重点难点提示 重点:理解一元一次不等式组的概念及解集的概念。 难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。 二、学习指导: 1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。但这“几个一元一次不等式”必须含有同一个未知数,否则就不是一元一次不等式组了。 2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本身就说明了这点);而一元一次不等式组中几个不等式却是独立的,而且组成不等式组的不等式的个数可以是三个或多个。(课本上主要学习由两个一元一次不等式组成的不等式组
2、)。 3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。(注意借助于数轴找公共解) 4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设a>b)不等式组的解集 数轴表示 1) (同大型,同大取大)x>a 2) (同小型,同小取小) x<b 3) (一大一小型,小大之间) b<x<a 4) (比大的大,比小的小空集)无解 三、一元一次不等式组的解法 例1.解不等式组 并将解集标在数轴上 分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关系,是
3、独立的,在每一个不等式的解集都求出之后,才从“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。 步骤: 解:解不等式(1)得x> (1)分别解不等式组的每 解不等式(2)得x4 一个不等式 (2)求组的解集 (借助数轴找公共部分) (利用数轴确定不等式组的解集) 原不等式组的解集为 <x4(3)写出不等式组解集 (4)将解集标在数轴上例2.解不等式组 解: 解不等式(1)得x>-1, 解不等式(2)得x1, 解不等式(3)得x<2, 在数轴上表示出各个解为: 原不等式组解集为-1<x1 注意:借助数轴找公共解时,应选图中阴影部分,解集
4、应用小于号连接,由小到大排列,解集不包括-1而包括1在内,找公共解的图为图(1),若标出解集应按图(2)来画。 例3.解不等式组 解:解不等式(1)得x>-1, 解不等式(2), |x|5, -5x5, 将(3)(4)解在数轴上表示出来如图, 原不等式组解集为-1<x5. 四、一元一次不等式组的应用。 例4.求不等式组 的正整数解。 步骤: 解:解不等式3x-2>4x-5得:x<3, 1、先求出不等式组 解不等式 1得x2, 的解集。 2、在解集中找出它 所要求的特殊解, 原不等式组解集为x2, 正整数解。 这个不等式组的正整数解1、2。 例5 m为何整数时,方程组 的
5、解是非负数? 分析:本题综合性较强,注意审题,理解方程组解为非负数概念,即 。先解方程组用m的代数式表示x, y, 再运用“转化思想”,依据方程组的解集为非负数的条件列出不等式组寻求m的取值范围,最后切勿忘记确定m的整数值。 解:解方程组 得 方程组 的解是非负数, 即 解不等式组 此不等式组解集为 m , 又 m为整数, m=3或m=4。 例6解不等式 <0. 分析:由“ ”这部分可看成二个数的“商”此题转化为求商为负数的问题。两个数的商为负数这两个数异号,进行分类讨论,可有两种情况。(1) 或(2) 因此,本题可转化为解两个不等式组。 解: <0, (1) 或 (2) 由(1)
6、 无解, 由(2) - <x< , 原不等式的解为- <x< . 例7.解不等式-33x-1<5. 解法(1):原不等式相当于不等式组 解不等式组得- x<2, 原不等式解集为- x<2. 解法(2):将原不等式的两边和中间都加上1,得-23x<6, 将这个不等式的两边和中间都除以3得, - x<2, 原不等式解集为- x<2. 例8.x取哪些整数时,代数式 与代数式 的差不小于6而小于8。 分析:(1)“不小于6”即6, (2) 由题意转化成不等式问题解决, 解:由题意可得,6 - <8, 将不等式转化为不等式组, 解不等式(
7、1)得x6, 解不等式(2)得x>- , 原不等式组解集为- <x6, - <x6的整数解为x=±3, ±2, ±1, 0, 4, 5, 6. 当x取±3,±2,±1,0,4,5,6时两个代数式差不小于6而小于8。 例9.有一个两位数,它十位上的数比个位上的数小2,如果这个两位数大于20并且小于40,求这个两位数。 分析:这题是一个数字应用题,题目中既含有相等关系,又含有不等关系,需运用不等式的知识来解决。题目中有两个主要未知数-十位上的数字与个位上的数;一个相等关系:个位上的数=十位上的数+2,一个不等关系:20&
8、lt;原两位数<40。 解法(1):设十位上的数为x, 则个位上的数为(x+2), 原两位数为10x+(x+2), 由题意可得:20<10x+(x+2)<40, 解这个不等式得,1 <x<3 , x为正整数, 1 <x<3 的整数为x=2或x=3, 当x=2时, 10x+(x+2)=24, 当x=3时, 10x+(x+2)=35, 答:这个两位数为24或35。 解法(2):设十位上的数为x, 个位上的数为y, 则两位数为10x+y, 由题意可得 (这是由一个方程和一个不等式构成的整体,既不是方程组也不是不等式组,通常叫做“混合组”)。 将(1)代入(2
9、)得,20<11x+2<40, 解不等式得:1 <x<3 , x为正整数,1 <x<3 的整数为x=2或x=3, 当x=2时,y=4, 10x+y=24, 当x=3时,y=5, 10x+y=35. 答:这个两位数为24或35。 解法(3):可通过“心算”直接求解。方法如下:既然这个两位数大于20且小于40,所以它十位上的数只能是2或3。当十位数为2时,个位数为4,当十位数为3时,个位数为5,所以原两位数分别为24或35。 例10.解下列不等式: (1)| |4; (2) <0; (3)(3x-6)(2x-1)>0. (1)分析:这个不等式不是一元
10、一次不等式,因此,不能用解一元一次不等式的方法来解。但由绝对值的知识|x|<a, (a>0)可知-a<x<a, 将其转化为 ;若|x|>a, (a>0)则x>a或x<-a. 解:| |4, -4 4, 由绝对值的定义可转化为: 即 解不等式(1),去分母:3x-1-8, 解不等式(2)去分母:3x-18, 移项:3x-8+1, 移项:3x8+1, 合并同类项:3x-7 合并同类项:3x9, 系数化为1, x- , 系数化为1: x3, , 原不等式的解集为- x3. (2)分析:不等式的左边为 是两个一次式的比的形式(也是以后要讲的分式形式),右
11、边是零。它可以理解成“当x取什么值时,两个一次式的商是负数?”由除法的符号法则可知,只要被除式与除式异号,商就为负值。因此这个不等式的求解问题,可以转化为解一元一次不等式组的问题。 解: <0, 3x-6与2x+1异号, 即:I 或II 解I的不等式组得 , 不等式组无解, 解II的不等式组得 , 不等式组的解集为- <x<2, 原不等式的解集为- <x<2. (3)分析:不等式的左边是(3x-6)(2x+1)为两个一次式的积的形式,右边是零。它可以理解为“当x取何值时,两个一次式的积是正数?”由乘法的符号法则可知只要两个因式同号,积就为正值。因此这个不等式的求解
12、问题,也可以转化为解一元一次不等式组的问题。 解: (3x-6)(2x+1)>0, (3x-6)与(2x+1)同号, 即I 或II 解I的不等式组得 , 不等式组的解集为x>2, 解II的不等式组得 , 不等式组的解集为x<- , 原不等式的解集为x>2或x<- . 说明:ab>0(或 >0)与ab<0(或 <0)这两类不等式都可以转化为不等式组的形式,进行分类讨论。这类问题一般转化如下: (1)ab>0(或 >0), a、b同号, 即I 或II , 再分别解不等式组I和II, 如例10的(3)题。 (2)ab<0(或 &
13、lt;0), ab<0(或 <0), a、b异号, 即I 或II , 再分别解不等式组I和不等式组II。 例11.已知整数x满足不等式3x-46x-2和不等式 -1< , 并且满足方程3(x+a)=5a-2试求代数式5a3- 的值。 分析:同时满足两个不等式的解的x值实际是将这两个不等式组成不等式组,这个不等式组的解集中的整数为x值。再将x值代入方程3(x+a)=5a-2,转化成a的方程求出a值,再将a代入代数式5a3- 即可。 解: 整数x满足3x-46x-2和 -1< , x为 ,解集的整数值, 解不等式(1),得x- , 解不等式(2)得,x<1, 的解集为
14、- x<1. - x<1的整数x为x=0, 又 x=0满足方程3(x+a)=5a-2, 将x=0代入3(x+a)=5a-2中, 3(0+a)=5a-2, a=1, 当a=1时,5a3- =5×13- =4 , 答:代数式5a3- 的值为4.。测试选择题 1解下列不等式组,结果正确的是( ) A、不等式组 的解集是x>3 B、不等式组 的解集是-3<x<-2 C、不等式组 的解集是x<-1 D、不等式组 的解集是-4<x<2 2不等式组 的解集是( ) A、x>1 B、x<3 C、x<1或x>3 D、1<x&
15、lt;3 3不等式组 的解集是( ) A、x<1 B、x>1 C、x<2 D、无解4如果不等式组 有解,那么m的取值范围是:( ) A、m>8 B、m8 C、m<8 D、m8 5使两个代数式x-1与x-2的值的符号相同的x取值范围是( )A、x>2 B、x<1 C、x<1或x>2 D、x>1或x<2 答案与解析答案:1、D 2、D 3、D 4、C 5、C 解析: 2.分析:由(1)得x<3,由(2)得x>1 1<x<3 答案:D 3.分析:先解不等式,看是否有解,由(1)得x<1, 由(2)得x&g
16、t;2,两者无公共部分,所以选D。答案:D 5.因x-1与x-2的值的符号相同,所以 或 可求得 x>2或x<1. 所以选C. 注:比较简单,应该全部正确。 一元一次不等式和它的解法考点扫描: 1了解一元一次不等式的概念 2会用不等式的基本性质解一元一次不等式 名师精讲: 一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式,叫一元一次不等式其标准形式是:ax+b>0或ax+b<0(a0) 1一元一次不等式经过去分母、去括号、移项、合并同类项等变形后,能化为ax>b或ax<b,其中x是未知数,a、b是已知数且a0。 2一元一次不等式的解
17、法步骤与解一元一次方程类似,基本思想是化为最简形式(ax>b或ax<b a0)后,再把系数化为1。应特别注意的是,当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变 中考典例: 1解不等式 (x1)<1,并把它的解集在数轴上表示出来 考点:一元一次不等式的解法 评析:一元一次不等式的解法与一元一次方程的解法相类似,只要注意不等式性质3的运用该题可先去分母(不要漏乘),再去括号,然后化成axb或ax<b的形式,最后得出解集,解题过程如下: 解:原不等式化为:x22(x1)<2 x22x+2<2 即:-2 x>2 它在数轴上表示为: 2(河北省)
18、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了_道题 考点:一元一次不等式的应用 评析:可设选对了x道,那么选错或不选的共有(25x)道题。根据题意,可以列不等式为4x2(25x)60,解不等式得18 ,取解集中的最小整数为19 说明:列不等式解的应用题,一般所求问题有至少、或最多、或不低于等词的要求,要正确理解这几个词的含义 3商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出
19、10%,但每日耗电量却为0.55度现将A型冰箱打折出售(打一折后的售价为原价的 ),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)? 考点:一元一次不等式的应用 评析:列一元一次不等式解应用题首先要弄清题意,设出适当的未知数消费者要买A型冰箱,10年的花费用比B型少才行,设打x折,那么A型10年的费用为2190× +365×10×1×0.40,B型10年的费用为2190×(1+10%)+365×10×0.55×0.40,根据题意得不等式2190× +365
20、15;10×1×0.402190×(1+10%)+365×10×0.55×0.40 解得x 8,所以至少打八折,解题过程如下: 解:设商场将A型冰箱打x折出售,消费者购买才合算 依题意,有 2190× +365×10×1×0.42190×(1+10%)+365×10×0.55×0.4 即 21914602409803 解这个不等式,得 x8 答:商场应将A型冰箱至少打八折出售,消费者购买才合算 真题专练: 1不等式72x> 1的正整数解是 2若代数式
21、 +2x的值不大于代数式8 的值,那么x的正整数解是 3恩格尔系数表示家庭日常饮食开支占家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:家庭类型贫困家庭温饱家庭小康家庭发达国家家庭最富裕国家家庭思格尔系数(n) 75%以上50%75% 40%49% 20%39% 不到20% 则用含n的不等式表示小康家庭的恩格尔系数为_ 4(杭州市)x的2倍减3的差不大于1,列出的不等式是 ( ) A、2x31B、2x31C、2x31D、2x31 5(内江市)解不等式 6(安徽省)解不等式3x2(12x)1,并把解集在数轴上表示出来 7(陕西省)乘某城市的一种出租汽车起
22、价是10元(即行驶路程在5km以内都需付10元车费),达到或超过5km后,每增加1km加价12元(不足1km部分按1km计)现在某人乘这种出租汽车从甲地到乙地,支付车费172元,从甲地到乙地的路大约是多少? 答案: 1、1,2; 2、1,2,3(提示:根据题意得不等式 +2x8 解不等式得x , 正整数解为1,2,3); 3、40%n49% 4、A; 5、解:去分母得8x420x215x60 移项合并同类项得27x54 解得x2 6、解:3x2+4x1, 7x3, x 所以原不等式的解集为x 在数轴上表示为: 7、解:设从甲地到乙地的路程大约是xkm,根据题意,得 16<10+1.2(x
23、5)17.2 解此不等式组,得 10<x11 答:从甲地到乙地的路程大于10km,小于或等于11km一元一次不等式组和它的解法考点扫描: 1了解一元一次不等式组及其解集的概念 2掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集 名师精讲: 1一元一次不等式组及其解集: 几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集 2求不等式组的解集的过程,叫做解不等式组 3解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部
24、分,即这个不等式组的解集 中考典例: 1不等式组 的解集是_ 考点:一元一次不等式组的解法 评析:分别求出不等式组中的每一个不等式的解集,解不等式(1)得x<4,解不等式(2)得x<5,公共部分是x<4,即为不等式组的解集,所以结果为x4 2若不等式组 的解集为1<x<1,那么(a+1)(b1)的值等于 考点:不等式组解集的应用 评析:此题类型是;已知不等式组的解集,求其中字母系数,进而求关于字母系数的代数式的值。这类问题解法是:先解不等式组,求得其解集,再与给出的解集相联系,求出字母系数的值,进而代入所给代数式,求出代数式的值,具体解法如下: 解:由21得x ;
25、由2b3得x3+2b,因为方程组有解,所以, 3+2b,方程组的解是32< ,又已知方程组的解是:-<1, =1,= -2 (a+1)(b-1) =-6 3不等式组 的最小整数解为( ) A、 1B、0C、1D、4 考点:不等式组的整数解 评析:解不等式(2)得x4,所以不等式组的解集为 x4,在此不等式中最小整数为0,所以选B 说明:解此类问题是先求出不等式组的解集,然后在解集中,求整数值 真题专练: 1不等式组 的解集是 ,这个不等式组的最小整数解是 2不等式组 的解集是_ 3不等式组 的解集是 4不等式组 的解集是 5不等式组 的解集是 6若不等式组 有三个整数解则a的取值范
26、围是 7不等式组 的解集是( ) A、x>1B、x<6C、1< x <6D、x<1或x>6 8不等式组 的解在数轴上可表示为( ) 9不等式组 的解集( ) A、x1B、x2C、1x2D、1x2 10不等式组 的整数解是( ) A、1,0,1B、1,1 C、1,0 D、0,1 11不等式组成 的整数解的个数是( ) A、1个B、2个C、3个D、4个 12一元一次不等式组 的解集在数轴上表示正确的是( ) A、 B、 C、 D、 13不等式组 的解集是( ) A、2<x<1B、x<1C、x>2D、无解 14不等式组 的解集是( ) A、
27、4<x<1B、4<x<1C、1<x<4D、1<x<4 15不等式组 的整数解的个数是( ) A、1B、2C、3D、4 16有解集为2<x<3的不等式组是( ) A、 B、 C、 D、 17解不等式组 18解不等式组 19求不等式组 的整数解 20解不等式组 21解不等式组 并写出不等式组的整数解 22解不等式组, 并把解集在数轴上表示出来 23解不等式组 并把解集在数轴上表示出来 24解不等式组 25解不等式组 并在数轴上表示解集 26求不等式组 的整数解 答案: 1、4< x<2,3; 2、2x<4; 3、1x&l
28、t;2; 4、x<3; 5、10<x2 6、0<a1(提示由已知得xa ,x3,则其解集为a<x3,故a的范围为0<a1; 7、C8、A9、D10、C11、D12、C13、A14、A15、C16、C 17、解:解不等式(1),得x<3 解不等式(2),得x+83x x2 在数轴上表示不等式(1),(2)的解集 不等式组的解集为-23 18、解:解10 4 (x 3)2 (x 1),得x4 解x 1 , 得x 不等式组的解集为 < x4 19、解:解3x+7<5(x+2),得x 解 ,得x2 不等式组的解集为 x2 在 x2中的整数有1、0、1 不
29、等式组的整数解是:1、0、1 20、解:解不等式得 x<2 解不等式得 x1 所以不等式组的解集是1x<2 21、解:解不等式2x+53(x+2),得x1解不等式 得x<3 原不等式组的解集是1x3 不等式组的整数解是1,0,1,2 22、解:由不等式x4(x5)8得x4 由不等式 不等式组的解集是 这个不等式组的解集在数轴上表示如下: 23、提示:原不等式变为 解得 解集为 1x9在数轴上表示如图所示 24、提示:解不等式得x ,解不等式得x0,所以不等式组解集为0x 25、提示:解不等式得x1,解不等式得x4,所以不等式组的解集为1x4在数轴上表示如图所示 26、解:由得
30、- ,由 得1 原不等式组的解集为:- 1 为整数, -1,0,1即不等式组的整数解为-1,0,1一次不等式(组)中参数取值范围求解技巧已知一次不等式(组)的解集(特解),求其中参数的取值范围,以及解含方程与不等式的混合组中参变量(参数)取值范围,近年在各地中考卷中都有出现。求解这类问题综合性强,灵活性大,蕴含着不少的技能技巧。下面举例介绍常用的五种技巧方法。 一、化简不等式(组),比较列式求解 例1若不等式 的解集为 ,求k值。 解:化简不等式,得x5k,比较已知解集 ,得 , 。 例2(山东威海市中考题)若不等式组 的解集是x>3,则m的取值范围是( )。 A、m3 B、m=3 C、
31、m<3 D、m3 解:化简不等式组,得 ,比较已知解集x>3,得3m, 选D。 例3(重庆市中考题)若不等式组 的解集是-1<x<1,那么(a+1)(b-1)的值等于_。 解:化简不等式组,得 它的解集是-1<x<1, 也为其解集,比较得 (a+1)(b-1)=-6. 评述:当一次不等式(组)化简后未知数系数不含参数(字母数)时,比较已知解集列不等式(组)或列方程组来确定参数范围是一种常用的基本技巧。 二、结合性质、对照求解 例4(江苏盐城市中考题)已知关于x的不等式(1-a)x>2的解集为 ,则a的取值范围是( )。 A、a>0 B、a>
32、1 C、a<0 D、a<1 解:对照已知解集,结合不等式性质3得:1-a<0, 即a>1,选B。 例5(湖北荆州市中考题)若不等式组 的解集是x>a,则a的取值范围是()。 A、a<3 B、a=3 C、a>3 D、a3 解:根确定不等式组解集法则:“大大取较大”,对照已知解集x>a,得a3, 选D。 三、利用性质,分类求解 例6已知不等式 的解集是 ,求a的取值范围。 解:由解集 得x-2<0,脱去绝对值号,得 。 当a-1>0时,得解集 与已知解集 矛盾; 当a-1=0时,化为0·x>0无解; 当a-1<0时,得解集 与解集 等价。 例7若不等式组 有解,且每一个解x均不在-1x4范围内,求a的取值范围。 解:化简不等式组,得 它有解, 5a-6<3aÞa<3;利用解集性质,题意转化为:其每一解在x<-1或x>4内。于是分类求解,当x<-1时,得 ,当x>4时,得4<5a-6&
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三方协议背靠背合同
- 浙江省杭州市大关中学教育集团2025-2026学年九年级上学期期中检测语文试题(含答案及解析)
- 公司杠杆协议书范本
- 兄弟之间家庭协议书
- 四川省成都市成华区列五中学2024-2025学年高二上学期10月测试英语试卷含解析
- 宁波广电广通移动数字电视限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 内外架出租合同范本
- 桁架租赁的合同范本
- 框架协议意向书合同
- 农业车买卖合同范本
- 2025年生产安全事故案例盘点
- 工地木匠考试题及答案
- 拇外翻课件教学课件
- 邮政外包人员管理办法
- 院感监测与报告课件
- 黑木耳多糖与多肽的稳定性及其生物活性研究
- 算力城域网白皮书(2025版)
- 三国演义小说讲解
- 2025学校入团考试题库及一套答案详解
- 港口码头合同范本(2025版)
- 高端人才引进及培养协议
评论
0/150
提交评论