用于ClassD音频功放中的振荡器设计_第1页
用于ClassD音频功放中的振荡器设计_第2页
用于ClassD音频功放中的振荡器设计_第3页
用于ClassD音频功放中的振荡器设计_第4页
用于ClassD音频功放中的振荡器设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    用于Class D音频功放中的振荡器设计近年来, D类音频功率放大器凭借其效率高,功耗低等优点, 已成为MP3、移动电话等便携式音频系统的首选解决方案。而振荡器是D类音频放大器的重要组成部分, 振荡器对放大器的音质、芯片效率、电磁干扰等指标有着重要的影响。为此, 本文设计了一种应用于D类功放的电流控制振荡器电路。该模块基于电流模式, 主要实现两个功能: 一是提供幅度与电源电压成正比的三角波信号; 二是提供频率几乎与电源电压无关的方波信号, 该方波信     近年来, D类音频功率放大器凭借其效率高

2、,功耗低等优点, 已成为MP3、移动电话等便携式音频系统的首选解决方案。而振荡器是D类音频放大器的重要组成部分, 振荡器对放大器的音质、芯片效率、电磁干扰等指标有着重要的影响。为此, 本文设计了一种应用于D类功放的电流控制振荡器电路。该模块基于电流模式, 主要实现两个功能: 一是提供幅度与电源电压成正比的三角波信号; 二是提供频率几乎与电源电压无关的方波信号, 该方波信号的占空比为50%。1 电流模式振荡器原理振荡器的工作原理是通过MOS开关管来控制电流源对电容的充放电以产生三角波信号。传统的基于电流模式的振荡器结构框图如图1所示。图1 电流控制振荡器的原理结构图1中, R1、R2、R3、R4

3、通过对电源电压的分压来产生阈值电压VH、VL和参考电压Vref。参考电压再通过放大器OPA与MN1构成的LDO结构来产生与电源电压成正比的参考电流Iref。因此有:本系统中的MP1、MP2、MP3可构成镜像电流源, 以产生充电电流IB1。而MP1、MP2、MN2、MN3组成的镜像电流源则产生放电电流IB2。假设MP1、MP2、MP3宽长比相等, MN2、MN3的宽长比相等。则有:振荡器工作时, 在充电阶段t1时, CLK=1,MP3管以恒定电流IB1对电容充电, 此后A点电压线性上升, 当A点电压大于VH时, cmp1输出端电压翻转为零。逻辑控制模块主要由RS触发器组成, 当cmp1输出为0时

4、, 输出端CLK翻转为低电平, CLK为高电平。振荡器进入放电阶段t2, 此时电容C开始以恒定电流IB2放电, 使A点的电压下降。当电压下降到小于VL时, cmp2的输出电压变为0。RS触发器翻转, CLK变为高电平, CLK变为低电平, 从而完成一个周期的充放电过程。由于IB1和IB2相等, 所以, 电容的充电和放电时间相等, A点三角波的上升沿斜率与下降沿斜率的绝对值相等, 因此, CLK信号为占空比50%的方波信号。该振荡器的输出频率与电源电压无关, 而三角波的幅度则与电源电压成正比。2 振荡器电路的实现本文设计的振荡器电路实现如图2所示。该电路分为阈值电压产生电路, 充放电电流产生电路

5、和逻辑控制电路三个部分。图2 振荡器的具体实现电路2.1 阈值电压产生部阈值电压产生部分可由MN1和四个阻值相等的分压电阻R1、R2、R3和R4来构成。MOS管MN1在此作为开关管。无音频信号输入时, 芯片将CTRL端置为低电平, VH、VL均为0V, 振荡器停止工作, 以降低芯片的静态功耗。有信号输入时, CTRL为低电平, VH=3Vdd/4, VL=Vdd/4。由于比较器工作的高频状态下, 如果B点和C点直接与比较器输入端相连, 则可能会通过MOS管的寄生电容对阈值电压产生电磁干扰。故本电路将B点和C点与缓冲器相连。电路仿真表明, 使用缓冲器可以有效隔离电磁干扰, 稳定阈值电压。2.2

6、充放电电流的产生与电源电压成正比的电流可由OPA、MN2和R5产生。由于OPA的增益很高, 因此, Vref与V5之间的电压差可以忽略不计。由于存在沟道调制效应, MP11和MN10的电流会受到源漏电压的影响, 因此, 对电容的充放电电流不再与电源电压呈线性关系。本设计中,电流镜采用cascode结构可以稳定MP11和MN10的源漏电压, 降低对电源电压的敏感程度。从交流角度看, cascode结构提高了电流源(层) 的输出电阻, 减小了输出( 入) 电流的误差。MN3、MN4、MP5 用于为MP12 提供偏置电压。MP8、MP10、MN6则可为MN9提供偏置电压。2.3 逻辑控制部分触发器的

7、输出CLK和CLK为相位相反的方波信号, 可用来控制MP13、MN11与MP14、MN12的开启和关断。MP14和MN11作为开关管, 其作用相当于图1中的SW1和SW2。MN12和MP13作为辅助管, 其主要作用是减小充放电电流的毛刺,消除三角波的尖冲现象。尖冲现象主要是由于MOS管状态转换时的沟道电荷注入效应所引起的。假设去除MN12和MP13, CLK从0跳变到1时,MP14由导通到关闭状态, 同时迫使MP11和MP12组成的电流源瞬间内从饱和区进入深线性区, 并使MP11、MP12、MP13的沟道电荷在极短的时间内抽出, 而这将引起很大的毛刺电流, 从而使A点出现尖冲电压。与此同时,

8、MN11由关断状态跳转到导通状态, MN10和MN9组成的电流层从深线性区转到饱和区, 这三个管子的沟道电容短时间内充电, 同样会引起大的毛刺电流和尖冲电压。同样, 若去除辅助管MN12, 那么, CLK跳变时, MN11、MN10、MN9也会产生大的毛刺电流与尖冲电压。虽然MP13与MP14宽长比相同, 但栅极电平相反, 因此, MP13与MP14交替导通。MP13对消除尖冲电压主要起两个作用。一是保证MP11、MP12在整个周期内都工作在饱和区, 以保证电流的连续性, 避免由电流镜所引起的尖冲电压;二是使MP13、MP14构成互补管。这样, 在CLK电压变化瞬间, 一个管子的沟道电容充电,

9、 同时另外一个管子的沟道电容放电, 正负电荷相互抵消, 从而大大减小毛刺电流。同理, MN12的引入也会起到相同的作用。2.4 修调技术的应用在不同的晶片之间, 不同批次的MOS管的参数会有所不同。在不同的工艺角下, MOS管的氧化层厚度to也会有差别, 相应的Cox也会随之变化, 从而引起充放电电流大小发生偏移, 使振荡器的输出频率发生变化。在集成电路设计中, 修调技术主要是针对电阻、电阻网络(或电容网络)进行修调。采用不同的修调技术可增大或减小阻值(或容值), 从而设计不同的电阻网络(或电容网络)。充 放电电流IB1和IB2主要由电流Iref决定。而Iref=Vdd/2R5。因此, 本设计

10、选择对电阻R5进行修调,修调网络如图3所示, 图中, 所有电阻阻值均相等。本设计中, 电阻R5的阻值为45k。R5由十个阻值为4.5k的小电阻串联。将A、B两点之间的金属丝熔断可将R5的阻值提高2.5%, 而将B,C之间的金属丝熔断可将电阻提高1.25%, 将A、B和B、C之间的熔丝都熔断, 则可将阻值提高3.75%。这种修调技术的缺点是只能将电阻值调大, 而不能调小。图3 电阻修调网络结构3 仿真结果分析本设计可在CSMC公司的0.5mCMOS工艺上实现, 并可利用Spectre工具对振荡器进行仿真。3.1 互补开关管对三角波的改善图4所示是互补开关管对三角波的改善示意图。由图4可见, 本设计中MP13和MN12的波形在斜率变化时没有明显的尖峰, 而且在添加辅助管后, 其波形尖冲现象基本消失。图4 互补开关管对三角波的改善波形3.2 电源电压和温度的影响图5所示是电压和温度对频率的影响曲线。从图5可以看出, 电源电压从3V变化到5V时, 其振荡器的频率变化为1.86%; 当温度从-40变化到120时, 振荡器频率变化了1.93%。可见在温度和电源电压变化范围很大时, 该振荡器的输出频率仍可保持稳定, 故可保证芯片的正常工作。图5 电压和温度对频率的影响曲线4 结束语本文设计了一种应用于D类音频功放的电流控制振荡器。在典型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论