教案9 单调性_第1页
教案9 单调性_第2页
教案9 单调性_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.河北武邑中学课堂教学设计备课人授课时间课题§1.3.1函数的单调性教学目标知识与技能掌握用定义证明函数单调性的步骤,1学会运用函数图象理解和研究函数的性质;2可以纯熟应用定义判断与证明函数在某区间上的单调性过程与方法启发引导,充分发挥学生的主体作用情感态度价值观使学生感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感.重点函数的单调性及其几何意义难点利用函数的单调性定义判断、证明函数的单调性教学设计教学内容教学环节与活动设计一创设情景,提醒课题1 观察以下各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:yx1-11-1yx1-11-1yx1-11-1 随x的增大,

2、y的值有什么变化? 能否看出函数的最大、最小值? 函数图象是否具有某种对称性?2 画出以下函数的图象,观察其变化规律: 1fx = x 从左至右图象上升还是下降 _? 在区间 _ 上,随着x的增大,fx的值随着 _ yx1-11-1yx1-11-11教学设计教学内容教学环节与活动设计2fx = -x+2 从左至右图象上升还是下降 _? 在区间 _ 上,随着x的增大,fx的值随着 _ 3fx = x2在区间 _ 上,fx的值随着x的增大而 _ 在区间 _ 上,fx的值随着x的增大而 _ 3、从上面的观察分析,能得出什么结论?二研探新知1、y = x2的图象在y轴右侧是上升的,如何用数学符号语言来

3、描绘这种“上升呢?学生通过观察、考虑、讨论,归纳得出:函数y = x2在0,+上图象是上升的,用函数解析式来描绘就是:对于0,+上的任意的x1,x2,当x1x2时,都有x12x22 . 即函数值随着自变量的增大而增大,具有这种性质的函数叫增函数。2增函数一般地,设函数y=fx的定义域为I,假如对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有fx1<fx2,那么就说fx在区间D上是增函数increasing function3、从函数图象上可以看到,y= x2的图象在y轴左侧是下降的,类比增函数的定义,你能概括出减函数的定义吗?注意: 函数的单调性是在定义

4、域内的某个区间上的性质,是函数的部分性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有fx1<fx2 4函数的单调性定义假如函数y=fx在某个区间上是增函数或是减函数,那么就说函数y=fx在这一区间具有严格的单调性,区间D叫做y=fx的单调区间.yx1-11-1yx1-11-1yx1-11-1学生答复后老师归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的一个重要性质函数的单调性引出课题。2教学设计教学内容教学环节与活动设计三质疑辩论,

5、开展思维。根据函数图象说明函数的单调性例1 如图是定义在区间5,5上的函数y=fx,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2 物理学中的玻意耳定律P=k为正常数告诉我们,对于一定量的气体,当其体积V减少时,压强P将增大。试用函数的单调性证明之。分析:按题意,只要证明函数P=在区间0,+上是减函数即可。四稳固练习:课本P38练习第1、2、3题师:判断函数单调性的方法步骤利用定义证明函数fx在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1<x2; 作差fx1fx2;变形通常是因式分解和配方;定号即判断差fx1fx2的正负;下结论即指出函数fx在给定的区间D上的单调性教学小结函数的单调性一般是先根据图象判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论