全国高中数学联赛试题与答案1试2试_第1页
全国高中数学联赛试题与答案1试2试_第2页
全国高中数学联赛试题与答案1试2试_第3页
全国高中数学联赛试题与答案1试2试_第4页
全国高中数学联赛试题与答案1试2试_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2007年全国高中数学联合竞赛一试试卷(考试时间:上午8:009:40)一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥PABCD中,APC=60°,则二面角APBC的平面角的余弦值为( )A. B. C. D. 2. 设实数a使得不等式|2xa|+|3x2a|a2对任意实数x恒成立,则满足条件的a所组成的集合是( )A. B. C. D. 3,33. 将号码分别为1、2、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。则使不等式a2b+10>0成立的事件发生的概率等于( )A

2、. B. C. D. 4. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,则的值等于( )A. B. C. 1D. 15. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( )6. 已知A与B是集合1,2,3,100的两个子集,满足:A与B的元素个数相同,且为AB空集。若nA时总有2n+2B,则集合AB的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A(3,0),B(1,1),C(0,3),D(1,3)及一个

3、动点P,则|PA|+|PB|+|PC|+|PD|的最小值为_。8. 在ABC和AEF中,B是EF的中点,AB=EF=1,BC=6,若,则与的夹角的余弦值等于_。9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于_。10. 已知等差数列an的公差d不为0,等比数列bn的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于_。11. 已知函数,则f(x)的最小值为_。12. 将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有

4、_种(用数字作答)。三、解答题(本题满分60分,每小题20分)13. 设,求证:当正整数n2时,an+1<an。14. 已知过点(0,1)的直线l与曲线C:交于两个不同点M和N。求曲线C在点M、N处切线的交点轨迹。15. 设函数f(x)对所有的实数x都满足f(x+2)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。2007年全国高中数学联合竞赛一试试题参考答案一、选择题

5、(本题满分36分,每小题6分)1. 如图,在正四棱锥PABCD中,APC=60°,则二面角APBC的平面角的余弦值为( B )A. B. C. D. 解:如图,在侧面PAB内,作AMPB,垂足为M。连结CM、AC,则AMC为二面角APBC的平面角。不妨设AB=2,则,斜高为,故,由此得。在AMC中,由余弦定理得。2. 设实数a使得不等式|2xa|+|3x2a|a2对任意实数x恒成立,则满足条件的a所组成的集合是( A )A. B. C. D. 3,3解:令,则有,排除B、D。由对称性排除C,从而只有A正确。一般地,对kR,令,则原不等式为,由此易知原不等式等价于,对任意的kR成立。由

6、于,所以,从而上述不等式等价于。3. 将号码分别为1、2、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。则使不等式a2b+10>0成立的事件发生的概率等于( D )A. B. C. D. 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。由不等式a2b+10>0得2b<a+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、9中每一个值,使不等式成立,则共有9×5=45种;当b=6时,a可取3、4、9中每一个值,有7种;当b=7时,a可取

7、5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种。于是,所求事件的概率为。4. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,则的值等于( C )A. B. C. 1D. 1解:令c=,则对任意的xR,都有f(x)+f(xc)=2,于是取,c=,则对任意的xR,af(x)+bf(xc)=1,由此得。一般地,由题设可得,其中且,于是af(x)+bf(xc)=1可化为,即,所以。由已知条件,上式对任意xR恒成立,故必有,若b=0,则由(1)知a=0,显然不满足(3)

8、式,故b0。所以,由(2)知sinc=0,故c=2k+或c=2k(kZ)。当c=2k时,cosc=1,则(1)、(3)两式矛盾。故c=2k+(kZ),cosc=1。由(1)、(3)知,所以。5. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( A )解:设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是和的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。当r1=r2且r1+r2<2c时,圆P的圆心轨迹如选项B;当0<2c<|r1r2|

9、时,圆P的圆心轨迹如选项C;当r1r2且r1+r2<2c时,圆P的圆心轨迹如选项D。由于选项A中的椭圆和双曲线的焦点不重合,因此圆P的圆心轨迹不可能是选项A。6. 已知A与B是集合1,2,3,100的两个子集,满足:A与B的元素个数相同,且为AB空集。若nA时总有2n+2B,则集合AB的元素个数最多为( B )A. 62B. 66C. 68D. 74解:先证|AB|66,只须证|A|33,为此只须证若A是1,2,49的任一个34元子集,则必存在nA,使得2n+2B。证明如下:将1,2,49分成如下33个集合:1,4,3,8,5,12,23,48共12个;2,6,10,22,14,30,1

10、8,38共4个;25,27,29,49共13个;26,34,42,46共4个。由于A是1,2,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在nA,使得2n+2B。如取A=1,3,5,23,2,10,14,18,25,27,29,49,26,34,42,46,B=2n+2|nA,则A、B满足题设且|AB|66。二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A(3,0),B(1,1),C(0,3),D(1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为 。解:如图,设AC与BD交于F点,则|PA|+|

11、PC|AC|=|FA|+|FC|,|PB|+|PD|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|PA|+|PB|+|PC|+|PD|取到最小值。8. 在ABC和AEF中,B是EF的中点,AB=EF=1,BC=6,若,则与的夹角的余弦值等于 。解:因为,所以,即。因为,所以,即。设与的夹角为,则有,即3cos=2,所以。9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于 。解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A所在的三个面上,即面AA1B1B、面ABCD和面AA1D1D上;

12、另一类在不过顶点A的三个面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上。在面AA1B1B上,交线为弧EF且在过球心A的大圆上,因为,AA1=1,则。同理,所以,故弧EF的长为,而这样的弧共有三条。在面BB1C1C上,交线为弧FG且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B,半径为,所以弧FG的长为。这样的弧也有三条。于是,所得的曲线长为。10. 已知等差数列an的公差d不为0,等比数列bn的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于 。解:因为,故由已知条件知道:1+q+q2为,其中m为正整数。令,则。由于q是小于1的正有理数,所以

13、,即5m13且是某个有理数的平方,由此可知。11. 已知函数,则f(x)的最小值为 。解:实际上,设,则g(x)0,g(x)在上是增函数,在上是减函数,且y=g(x)的图像关于直线对称,则对任意,存在,使g(x2)=g(x1)。于是,而f(x)在上是减函数,所以,即f(x)在上的最小值是。12. 将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有 3960 种(用数字作答)。解:使2个a既不同行也不同列的填法有C42A42=72种,同样,使2个b既不同行也不同列的填法也有C42A42=72种,故由乘法原理,这样的填

14、法共有722种,其中不符合要求的有两种情况:2个a所在的方格内都填有b的情况有72种;2个a所在的方格内仅有1个方格内填有b的情况有C161A92=16×72种。所以,符合题设条件的填法共有7227216×72=3960种。三、解答题(本题满分60分,每小题20分)13. 设,求证:当正整数n2时,an+1<an。证明:由于,因此,于是,对任意的正整数n2,有,即an+1<an。14. 已知过点(0,1)的直线l与曲线C:交于两个不同点M和N。求曲线C在点M、N处切线的交点轨迹。解:设点M、N的坐标分别为(x1,y1)和(x2,y2),曲线C在点M、N处的切线分

15、别为l1、l2,其交点P的坐标为(xp,yp)。若直线l的斜率为k,则l的方程为y=kx+1。由方程组,消去y,得,即(k1)x2+x1=0。由题意知,该方程在(0,+)上有两个相异的实根x1、x2,故k1,且=1+4(k1)>0(1),(2),(3),由此解得。对求导,得,则,于是直线l1的方程为,即,化简后得到直线l1的方程为(4)。同理可求得直线l2的方程为(5)。(4)(5)得,因为x1x2,故有(6)。将(2)(3)两式代入(6)式得xp=2。(4)+(5)得(7),其中,代入(7)式得2yp=(32k)xp+2,而xp=2,得yp=42k。又由得,即点P的轨迹为(2,2),(

16、2,2.5)两点间的线段(不含端点)。15. 设函数f(x)对所有的实数x都满足f(x+2)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。证明:记,则f(x)=g(x)+h(x),且g(x)是偶函数,h(x)是奇函数,对任意的xR,g(x+2)=g(x),h(x+2)=h(x)。令,其中k为任意整数。容易验证fi(x),i=1,2,3,4是偶函数,且对任意的xR,fi(x+

17、)=fi(x),i=1,2,3,4。下证对任意的xR,有f1(x)+f2(x)cosx=g(x)。当时,显然成立;当时,因为,而,故对任意的xR,f1(x)+f2(x)cosx=g(x)。下证对任意的xR,有f3(x)sinx+f4(x)sin2x=h(x)。当时,显然成立;当x=k时,h(x)=h(k)=h(k2k)=h(k)=h(k),所以h(x)=h(k)=0,而此时f3(x)sinx+f4(x)sin2x=0,故h(x)=f3(x)sinx+f4(x)sin2x;当时,故,又f4(x)sin2x=0,从而有h(x)=f3(x)sinx+f4(x)sin2x。于是,对任意的xR,有f3(

18、x)sinx+f4(x)sin2x=h(x)。综上所述,结论得证。2007年全国高中数学联合竞赛加试试卷(考试时间:上午10:0012:00)一、(本题满分50分)如图,在锐角ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点。过P作PEAC,垂足为E,做PFAB,垂足为F。O1、O2分别是BDF、CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是ABC的垂心。二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五

19、个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。三、(本题满分50分)设集合P=1,2,3,4,5,对任意kP和正整数m,记f(m,k)=,其中a表示不大于a的最大整数。求证:对任意正整数n,存在kP和正整数m,使得f(m,k)=n。2007年全国高中数学联合竞赛加试试题参考答案一、(本题满分50分)如图,在锐角ABC中,AB<AC,AD是边BC上的高,P是线段AD内一点。过P作PEAC,垂足为E,作PFAB,垂足为F。O1、O2分别是BDF、CDE的外心。求证:O1、O2、E、F四点共圆的充要条件为P是ABC的垂心。证明:连结BP、CP、O1O

20、2、EO2、EF、FO1。因为PDBC,PFAB,故B、D、P、F四点共圆,且BP为该圆的直径。又因为O1是BDF的外心,故O1在BP上且是BP的中点。同理可证C、D、P、E四点共圆,且O2是的CP中点。综合以上知O1O2BC,所以PO2O1=PCB。因为AF·AB=AP·AD=AE·AC,所以B、C、E、F四点共圆。充分性:设P是ABC的垂心,由于PEAC,PFAB,所以B、O1、P、E四点共线,C、O2、P、F四点共线,FO2O1=FCB=FEB=FEO1,故O1、O2、E、F四点共圆。必要性:设O1、O2、E、F四点共圆,故O1O2E+EFO1=180

21、76;。由于PO2O1=PCB=ACBACP,又因为O2是直角CEP的斜边中点,也就是CEP的外心,所以PO2E=2ACP。因为O1是直角BFP的斜边中点,也就是BFP的外心,从而PFO1=90°BFO1=90°ABP。因为B、C、E、F四点共圆,所以AFE=ACB,PFE=90°ACB。于是,由O1O2E+EFO1=180°得(ACBACP)+2ACP+(90°ABP)+(90°ACB)=180°,即ABP=ACP。又因为AB<AC,ADBC,故BD<CD。设B'是点B关于直线AD的对称点,则B'

22、;在线段DC上且B'D=BD。连结AB'、PB'。由对称性,有AB'P=ABP,从而AB'P=ACP,所以A、P、B'、C四点共圆。由此可知PB'B=CAP=90°ACB。因为PBC=PB'B,故PBC+ACB=(90°ACB)+ACB=90°,故直线BP和AC垂直。由题设P在边BC的高上,所以P是ABC的垂心。二、(本题满分50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子。如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连。现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连。问最少取出多少个棋子才可能满足要求?并说明理由。解:最少要取出11个棋子,才可能满足要求。其原因如下:如果一个方格在第i行第j列,则记这个方格为(i,j)。第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连。用反证法。假设可取出10个棋子,使余下的棋子没有一个五子连珠。如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子。这样,10个被取出的棋子不会分布在右下角的阴影部

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论