




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第60卷第1期有色金属Vol160,No112008年2月NonferrousMetalsFebruary2008矿区土壤重金属污染的植物修复研究进展武强,孙录科(中国矿业大学(北京)资源与安全工程学院,北京100083)摘要:综述矿区土壤重金属植物修复的研究进展并展望其发展趋势。关键词:环境工程;植物修复;综述;矿区;重金属污染中图分类号:X53;X751文献标识码:A)01-05,发展,污染1。,矿渣,选矿、冶炼及电镀等工业废水不断排放到周围环境中,造成周边土壤Pb,Cd,Cu,Zn,Cr,Hg,As等重金属污染严重。与其他污染物相比,重金属污染具有隐蔽性、毒性大、长期性和不可逆转性的特点
2、。因此,土壤重金属污染防治一直是国际上农业环境研究的难点和热点2-3。传统的土壤重金属污染治理方法是物理化学修复方法,主要包括客土法、化学冲洗法、化学固定法、电化学法、动电修复法等4。传统的物理化学修复法对于重金属和放射性物质污染的修复适用性较差,不能从根本上解决大面积的土壤环境污染问题5。近年来,出现了一种用植物来修复土壤污染的方法,该方法由于成本低、效果良好、不破坏环境而受到了广泛的关注,成为污染土壤修复研究的热点之一,为矿区土壤重金属的治理提供新的方法。综述矿区土壤重金属污染的植物修复机制及近年来植物修复的研究进展,以期对矿区重金属污染土壤的可持续治理提供科学借鉴。、灌木、草本,也包括作
3、物、水生植物,修复的介质可以是固相的土壤、沉积物,也可以是液相的水。根据其作用过程和机理,重金属污染土壤的植物修复技术分为植物稳定(phytostabilization)、植物挥发(phytovolatilization)、植物提取(phytoextrac2tion)几种类型。111植物稳定(固化)植物稳定指通过植物根系的吸收、螯合、沉淀或还原作用,使金属污染物惰性化,转变为低毒性形态,降低其生物有效性和移动性,从而固定于根系和根际土壤中,并防止其进入地下水和食物链,减少其对环境和人类健康危害的风险7。在此过程中,土壤中的重金属含量并不减少,只是形态发生变化。适用于固化污染土壤的理想植物,应是
4、一种能忍耐高含量污染物、根系发达的多年生常绿植物。这些植物通过根系吸收、沉淀或还原作用可使污染物惰性化。如植物通过分泌磷酸盐与铅结合成难溶的磷酸铅,使铅固化,而降低铅的毒性。此外,植物可以通过根际微生物改变根际环境的pH值和Eh值来改变重金属的化学形态,固定土壤中的重金属。如印度芥菜(B1juncea)的根能使有毒的、生物有效性高的六价Cr还原为低毒的、生物有效性低的三价Cr,使其固化8。植物固化技术适用于土壤质地黏重,有机质含量高的污染土壤的修复,对矿区土壤重金属污染物和放射性核素污染物固定尤为重要。112植物挥发1植物修复的概念及其修复机理植物修复(phytoremediation)是以植
5、物忍耐和超量富集某种污染物的理论为基础,利用自然生长或遗传工程培育的植物及其共存微生物体系,清除污染物的一种环境治理技术6。目前植物修复的对象主要是重金属和有机污染物,而用于修复的植收稿日期:2007-10-26基金项目:国家社会科学基金资助项目(00BJY035)作者简介:武强(1959-),男,内蒙清水河县人,博士,博士生导师,主要从事矿山环境与地质灾害等方面的研究。植物挥发是利用植物的吸收、积累和挥发功能而减少土壤中一些挥发性污染物,即植物将污染物吸收到体内后将其转化为气态物质,释放到大气中,从而减轻土壤污染9。已有的研究主要针对易形成具有挥发性、低毒性的元素Se和挥发性重金属Hg。许多
6、植物可从污染土壤中吸收Se并将其转化126有色金属第60卷为可挥发态,如硒积累植物黄芪属可将Se转化为挥发态的二甲基二硒。虽然现在还未发现能直接挥发Hg的自然生长的植物,但有研究利用转基因植物挥壤中As浓度为15000mg/kg时,生长两周后,该植物叶中As浓度可达158600mg/kg,并且生长迅速,可以有效的降低矿区土壤中As的含量17。Baker等在英国洛桑试验站首次以田间试验研究了在Zn污染土壤(440mg/g)栽种不同超富集植物和非超富集植物对土壤Zn的吸收清除效果。结果表明,超富集植物T1caeulescens富集Zn是非超富集植物Raphnussatinus(萝卜)的150倍,富
7、集Cd相应则是10倍。30kg/hm2,发汞,如Meagher等人发现经基因工程改良过的烟草(Nictioanatobacum)和拟南芥菜(Arabidop22+sisthaliana)能把Hg变为低毒的单质Hg挥发掉。113植物提取植物提取又称为植物萃取,是目前研究最多并且最有前景的方法。植物提取利用植物从土壤中吸收金属污染物,并在植物地上部分富集,对植物体收获后进行处理,从而降低了土壤中重金属量10。;能;生长快,生物量大;抗虫抗病能力强。目前发现的对重金属具有超积累能力的植物有45科约400多种。Reeves和Brooks11发现Thlaspirotundifolium的茎中Pb含量可高
8、达倍%,但系统性研究目前尚处于起步阶段。如龙健、黄昌勇等研究了浙江天台铅锌矿区香根草(Vetiveriazizanioides)及其群落中几种主要植物Cu,Cd,Zn,Pb的富集分布,对植物与土壤元素、对重金属的耐受性作了初步探讨18。袁敏、铁柏清通过盆栽试验的结果表明,高羊毛、早熟禾、黑麦草、紫花苜蓿在纯尾矿污染土壤或经处理的尾矿污染土壤上都能生长,利用改良措施与草坪草相结合的方法来修复重金属污染土壤具有可行性19。彭桂香、蔡婧等通过盆栽试验20,观察分析不同的土壤改良配方对重金属超积累植物尔南景天盆栽土壤中细菌、真菌和放线菌数的影响,以此来筛选出最优的促进尔南景天修复锌Zn、Cd染土壤的改
9、良剂配方。柬文圣、杨开颜等首次报道鸭跖草是Cu的超富集植物,可用于Cu污染土壤的植物修复,认为铜绿山海洲香薷、鸭跖草、蝇子草、头花寥、滨蒿种群都是Cu耐性植物,可用于富Cu土壤如矿业废弃地的植被重建21。丁克强、骆永明对苜蓿修复重金属Cu和有机物苯并a芘复合污染土壤进行了研究22。刘秀梅等在温室砂培盆栽条件下,研究有两种乡土植物羽叶鬼针草和酸模能够富集重金属铅,对铅有很好的耐性,铅含量是该项研究工作中另四种植物的220倍,能把绝大部分的铅迁移到茎叶,可以作为先锋植物去修复被铅污染的土壤23。利用植物吸收法治理土壤重金属污染耗时太久,原因主要是尚未找到所需的植物超富集体。近年来,这一领域引起了国
10、内更多学者的浓厚兴趣且取得了一定的进展,例如Chen和Wei在中国南方发现包括苎麻、酸模、牡蒿在内的一批As的超积累植物,可以有效治理As污染土壤24。陈同斌等通过湖南省野外调查和栽培实验,发现砷超富集植物蜈蚣草,其羽片含砷量可高达5070mg/kg,且蜈蚣草g/g2干物质。Shen等12发现溶液培养的8200g/T1careulesences地上部吸收Zn最大可达28000mol/L时未出现明显的g,溶液Zn处理浓度达1000受害症状。植物提取技术关键是筛选出超积累植物。2国内外重金属土壤污染的研究进展1583年意大利植物学家Cesalpino首次发现在意大利托斯卡纳“黑色的岩石”上生长的特
11、殊植物,这是有关超富集植物(Hyperaccumulator)的最早报道13,此后在矿藏勘探中陆续发现一些地方性植物具有富集重金属的特性。重金属污染土壤上大量地方性植物物种的发现促进了耐金属植物的研究。1977年Brooks提出了超积累植物的概念14,1983年Chaney提出了利用超积累植物消除土壤重金属污染的思想15。随后有关耐重金属植物与超积累植物的研究逐渐增多,植物修复作为一种安全、廉价的污染土壤的治理技术被提出,并成为研究和开发的热点。英国的Bradshaw16长期致力于矿山废弃地的生态恢复研究工作,最早利用当地的耐性植物对矿山土地进行了修复,并且成功的开发出可商业化应用的针对不同重
12、金属矿山废弃地的耐性品种系列。Kumar在含铅625mg/kg的土壤盆栽处理中种植Brassica(印度芥菜),三个星期后即使淋溶液中的g/mL下降到22g/mL。Lena等在铅含量由740美国中部发现的一种蕨类植物能超量积累As,当土第1期武强等:矿区土壤重金属污染的植物修复研究进展127生长快,生物量大,地理分布广,适应性强25。吴龙华等在芥菜营养生长旺盛期施用EDTA可显著提高旱地红壤Cu的活性,EDTA可显著增加芥菜茎叶、根的Cu浓度和吸收量,并且EDTA用量越大,效果越明显,表明EDTA对植物修复铜污染土壤具有强化作用26。蜈蚣草(PterisvittataL1)、浙江大学杨肖娥等人
13、在浙江发现了锌超富集植物东南景天(Se2。另外要特别重视寻找、培育多种重金属超富集植物,开展土壤重金属复合污染的治理工作。412植物组合技术由于超富集植物往往植株矮小、生物量小,再加dumalfrediiHance)等293植物修复技术的优点和局限性由于植物修复具有成本低、操作简便等优势,土壤重金属污染的植物修复得到广泛的应用。其优点主要表现为:(1)植物修复的成本较低,研究表明植物修复的费用为20010000/2处理费用为01022,用,;2),植物修复属于原位修复,对环境扰动少,避免了对土壤结构的破坏;(3)提高土壤有机质含量,增加土壤肥力,植物修复过程还能增加土壤有机质的含量,激发微生物
14、的活性,提高土壤肥力,适合于多种农作物的生长。与此同时重金属污染土壤的植物修复也有一定的局限性,主要是:(1)植物修复速率和效率,目前具有重金属超富集植物种类较少,而且植株矮小、生物量低、生长缓慢;(2)对于矿区土壤多种重金属的复合污染处理能力低,一般一种植物只吸收一种或两种重金属,从而限制了对重金属复合污染的处理效果;(3)用于吸收重金属的植物器官往往会通过落叶等途径使重金属元素重返土壤,另外需要对收获的重金属进行无害化处理。上环境条件的限制,。具:(1)螯合剂2植物修复,向土壤中施用螯合剂诱导或强化植物超富集作用,从而强化植物对重金属的吸收;(2)电压2植物修复,在电压作用下,电极附近土壤
15、溶液发生电化学反应,改变土壤中的Eh、pH值等理化性质,加快土壤重金属的解吸,提高土壤溶液中重金属的含量,从而强化植物的吸收和积累;(3)植物2微生物组合修复,与植物共生真菌,其发达的菌丝提高了植物根系吸收营养的范围,能促进植物对营养物质和重金属的吸收,同时许多真菌对重金属有很高的耐性和积累性,真菌的活动能降低重金属对植物的毒性,提供了对植物根系的保护,有利于修复植物的生长,将适合某种污染的真菌接种在超富集植物的根部,可以促进植物修复,例如在煤矿区接种形成的丛枝菌根对于植物的生物和重金属的去除具有十分明显的效果。413与传统物理化学方法相结合的综合技术研究4矿区土壤重金属污染植物修复的展望及发
16、展趋势411寻找和培育超富集植物及超富集机理研究将电化学、土壤淋洗法和植物提取综合应用到土壤修复中,比使用任何单一方法效果要好。电流能有效地将吸附的重金属从土壤颗粒中释放出来,含配体的溶液能提高土壤溶液中重金属的浓度,植物利用根系巨大的表面积将溶液中金属离子或金属配位离子进行吸附、吸收和进一步转运。综合技术可以弥补单一技术的缺陷,有利于在短时间内推上市场,将称为矿区土地重金属污染的一个发展研究方向。414基因工程在植物修复中的应用研究利用基因重组技术将具有金属富集特性的基因导入到生物量大且易收获的植物中,并利用该植物特定的受体细胞与载体一起得到复制和表达,使受体细胞获得新的遗传特性,最后将转基
17、因植物进行田间试验,以确定是否达到目的。目前,将基因技术应用于植物修复的研究才刚刚起步,但近年来研究目前发现的超富集植物主要集中在北美洲、大洋州和欧洲等发达国家。中国物种资源丰富,但发现的超富集植物比较少,而且目前能应用到工程化修复的超富集植物数量更加稀少。因此,继续寻找开发生物量大、富集重金属能力强的超富集植物是植物修复技术走向工程应用的首要任务。超富集植物的鉴别一个简单而有效的方法的是到矿区采集各种植物进行分析,如在稀土矿区、铜矿区发现了各自的超富集植物27-28。我国野生植物资源丰富,矿区类型众多,用于植物修复的野生植物资源十分丰富。目前在中国境内发现的许多超富集植物,如中国科学院陈同斌
18、等人在境内发现的砷超富集植物128有色金属第60卷结果表明基因技术的研究将是植物修复研究中的一个重要并很有价值的方向。如研究发现30,具有汞离子还原酶基因(merA)的细菌不仅能还原Hg2+,对Au3+和Ag+也有一定的还原能力,将merA引入到Arabidopsisthaliana,发现转基因的植物抗汞能力提高了3倍,并提高了对汞的吸收的能力,这种植参考文献:物对Au3+抗性也得到提高。随着目前的植物修复试验基本上还处于试验摸索阶段,大规模的工程应用较少。随着植物学、基因工程、微生物学等科学技术的发展,植物修复技术必将在矿区土壤重金属治理中大放异彩。1国土资源部.2003年中国国土资源公告E
19、B/OL.引用日期yyyy2mm2dd.:/wwww.mlr.2韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展J,20017:3BrooksRR.Plantsthathyper2accumulateheavymetalsJ.,()14夏星辉,陈静生.35王向健,郑玉峰.,2004,30(122):48-49.6丁佳红J.生物学杂志,2004,21(4):6-9.7肖鹏飞,J.辽宁大学学报,2004,31(3):279-283.8SaltDE,M,KumarpbAN,eta1.Phytoremediation:Anovelstrategyfortheremovaloftoxicmetal
20、sfromtheEnvi2ronmentusingplantsJ.Bio/Technology,1995,13(5):468-474.9WatanabeME.PhytoremediationonthebrinkcommercializationJ.EnvironmentalScienceandTechnology/News,1997,31(2):182A-186A.10KumarPBAN,DushenkkovV,MottoH,etal.Phytoextraction:theuseofplantstoremoveheavy2metalsfromsoilsJ.EnvironmentalScienc
21、eandTechnology,1995,29(5):1232-1238.11王学锋,朱桂芬.重金属污染研究新进展J.环境科学与技术,2003,26(1):54-56.12龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望J.应用生态学报,2002,13(6):757-762.13Baker,AJM,McGrathSP,Sidoli,CMD,etal.Thepossibilityofinstudyheavy2metaldecontaminationofpollutedsoilsusingcropsofmetal2accumulatingplantsJ.Resources,Conser
22、vationandRecycling,1994,11(3):41-49.14BrooksRR,LeeJ,ReevesRD,etal.DetectionofnickeliferousrocksbyanalysisofherbariumspeciesofindicatorplantsJ.JournalofGeochemicalExploration,1977,7(1):49-57.Ridge,NewJersey,USA:NoyesDataCorporation,1983:50-76.16BradshawAD,ChadwickMJ.TheRestoration0fLandM.Oxford:Black
23、wellSciencepublications,1980:55-59.17LenaQM.AfernthathyperaccumulatesarsenicJ.Nature,2001,409(3):579.18沈振国,刘友良.重金属超量积累植物研究进展J.植物生理学通讯,1998,34(2):133-139.19袁敏,铁柏清,唐美珍.土壤重金属污染的植物修复及其组合技术的应用J.中南林学院学报,2005,25(1):81-85.20武正华,张宇峰,王晓蓉,等.土壤重金属污染植物修复及基因技术的应用J.农业环境保护,2002,21(1):84-86.21薛生国,陈英旭,林琦,等.中国首次发现的锰超积
24、累植物2商陆J.生态学报,2003,23(5):935-937.22束文圣,杨开颜.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究J.应用与环境生物学报,2001,7(1):7-12.23刘秀梅,聂俊华,王庆仁.6种植物对铅的吸收与耐性研究J.植物生态学报,2002,26(5):533-537.24骆永明.金属污染土壤的植物修复J.土壤,1999,(5):261-265.25陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征J.科学通报,2002,47(3):207-211.26吴龙华,骆永明,黄焕忠.铜污染旱地红壤植物修复作用J.应用生态学报,2001,12(3):435-438.27BakerAJM,WalkerPL.Terrestrialhigherplantswhichhyperaccumulatemetalelements2areviewoftheirdiscov
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论