数学教学随笔之“花之冠”_第1页
数学教学随笔之“花之冠”_第2页
数学教学随笔之“花之冠”_第3页
数学教学随笔之“花之冠”_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教育资源数学教学随笔之“花之冠”俗话说,万事开头难,要想上好一堂课尤其是理论性很强的数学课,更离不开好的导入。几年来,我一直努力探索和研究,总结出了数学课的以下几种导入方法。一、温故知新导入法温故知新的教学方法,可以将新旧知识有机地结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲“奇偶性“时,可叫学生复习单调性的有关性质,做一联想和对比,从而引进奇偶性的有关概念。这样导入,学生能从旧知识的复习中发现一串新知识,清楚奇偶性与单调性的关系,并且掌握了奇偶性的有关性质。二、创设情境导入法数学知识的获得,往往是通过时间得来的,数学知识的探求过程为我们展示了丰富的知识背景。选取具体的背景,可以

2、使学生如临其境,生动形象。例如我在执教“相互独立事件同时发生的概率”时,创设如下情景:常说三个臭皮匠顶一个诸葛亮,能顶上吗?已知诸葛亮解出问题的概率为0.8,三个臭皮匠能解出问题的概率分别为0.5、0.45、0.4,且每个人必须独立解题,那么三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?三、实践导入法实践导入法是组织学生进行实践操作,通过学生自己动手动脑去探索知识,发现真理。例如在讲“椭圆定义”时,预先布置学生带好图钉、绳子、纸。在课堂内告诉他们方法,让他们自己发挥,使学生享受到探索新知识的快乐。四、反馈导入法根据信息论的反馈原理,一上课就给学生提由一些问题,由学生的反馈效果给

3、予肯定或纠正后导入新课。如在上“求函数定义域”时,课前可以先拟几个有代表性的习题让学生到黑板上练习,从学生练习的结果和学生的反馈中老师就可以发现问题。五、设疑式导入法设疑式导入法是根据中学生追根求源的心理特点,一上课就给学生创设一些疑问,创设矛盾,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知的一种方法。例如:在讲到指数函数时,首先以一个学生很熟悉的细胞分裂问题引入,引发学生的兴趣,从而使学生带着好奇进入思考。教师一站在讲台上就开门见山、单刀直入,用几句话引入新课。这样,使学生的情绪很快能安静下来,既起到组织教学的目的,又为后面的巩固练习留下了充足的时间。如在讲函

4、数单调性的证明时,直接提出函数单调性的定义,告诉学生直接从图象观察出来的单调性并不精确,只有通过定义证明才行,提出用定义证明的方法步骤,进行证明。这种方法直截了当,让学生容易理解。七、观察导入法据数学概念形成的规律,概念教学必须遵循从具体到抽象、由感性认识到理性认识的原则,教学新概念要建立在生动形象的直观上。例如在介绍分类计数原理与分步计数原理时,就学生很常见的乘车的例子引入,从简单的生活例子升华到抽象的数学原理,不至于学生在学习的过程中觉得枯燥。这种观察引入的方法进一步沟通了新旧知识的联系,使学生学得轻松愉快,概念理解深。八、故事引入法有与教材有关的故事引入,课堂会出现“洗耳恭听”的势态。例如在教“等差数列求和公式”时我先讲了一个数学小教育资源教育资源故事:德国的数学家高斯读小学时,老师出了一道算术题:“1+2+3+100=?老师刚读完题目,高斯就写生了答案5050,而其他同学还在一个数一个数地挨个相加呢。高斯是用什么方法做得这么快呢?这时学生出现惊疑,产生一种强烈的探究反响。我再点明课题:这就是今天要讲的等差数列的求和方法倒序相加法。俗话说,好的开头是成功的一半,上课伊始就能吸引学生的注意力和引起兴趣,产生强烈的好奇心和求知欲,教学往往会达到事半功倍的效果,其关键就是要创

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论