




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几种图像复原方法的对比一、Richardson-Lucy算法R-L算法是目前世界上应用最广泛的函数恢复技术之一,它是一种迭代方法。MATLAB提供的deconvlucy()函数还能够用于实现复杂图像重建的多种算法中,这些算法都基于Lucy-Richardson最大化可能性算法。R-L算法是一种迭代非线性复原算法,它是从最大似然公式推导出来的,图像用泊松分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程:其中,*代表卷积,代表相关,代表未退化图像的估计,g和h和以前定义一样。在IPT中,L-R算法由名为deconvlucy的函数完成的。deconvlucy()函
2、数的调用格式:J=deconvlucy(I,PSF,NUMIT,DAMPAR,WEIGHT)。其中,I表示输入图像,PSF表示点扩散函数。其他参数都是可选参数:NUMIT表示算法的迭代次数,默认为10次;DAMPAR是一个标量,它指定了结果图像与原图像I之间的偏离阈值表,默认值为0(无衰减);WEIGHT是一个与I同样大小的数组,它为每一个像素分配一个权重来反映其重量,表示像素加权值,默认值为原始图像的数值。图像复原源代码:% Deblurring Gray Images Using the Lucy-Richardson Algorithmclcclearclose allI=imread(
3、'E:lena512color.tif'); % 彩色图像的像素为512*512I1=rgb2gray(I); % 灰度图像的像素为512*512 % figure,imshow(I),title('Original color image');% figure,imshow(I1),title('Original gray image');I2=I1(1:2:end,1:2:end); % 图像的像素设置为256*256figure,imshow(I2),title('Gray Image 256*256'); PSF = fs
4、pecial('gaussian',5,5); % 点扩散函数Blurred = imfilter(I2,PSF,'symmetric','conv'); figure;imshow(Blurred);title('Gaussian Blurred');V = 0.0001;BlurredNoisy = imnoise(Blurred,'gaussian',0,V);figure;imshow(BlurredNoisy);title('Blurred & Noisy');K=size(I2)
5、;WT=zeros(K);WT(5:end-4,5:end-4)=1;J1 = deconvlucy(BlurredNoisy,PSF); % H1 = deconvlucy(BlurredNoisy,PSF,5); % 迭代5次% H1_cell=deconvlucy(BlurredNoisy,PSF,5);% H2_cell=deconvlucy(H1_cell,PSF);% H2=im2uint8(H2_cell2);J2 = deconvlucy(BlurredNoisy,PSF,5,im2uint8(3*sqrt(V); % 迭代5次J3 =deconvlucy(BlurredNoi
6、sy,PSF,15,im2uint8(3*sqrt(V);% 迭代15次J4 =deconvlucy(BlurredNoisy,PSF,25,im2uint8(3*sqrt(V);% 迭代25次J5 =deconvlucy(BlurredNoisy,PSF,40,im2uint8(3*sqrt(V);% 迭代40次J6 =deconvlucy(BlurredNoisy,PSF,20,im2uint8(3*sqrt(V),WT);% 迭代20次,加WTJ7 = deconvlucy(BlurredNoisy,PSF,40,im2uint8(3*sqrt(V),WT); % 迭代40次,加WT%
7、figure, imshow(J1);title('J1:deconvlucy(A,PSF)');% figure, imshow(H1); title('H1:Restored Image NUMIT=5');% figure,imshow(H2),title('H2:Restored Image NUMIT=15');figure, imshow(J2);title('J2:deconvlucy(A,PSF,NUMIT=5,DAMPAR)');figure, imshow(J3);title('J3:deconvluc
8、y(A,PSF,NUMIT=15,DAMPAR)');figure, imshow(J4);title('J4:deconvlucy(A,PSF,NUMIT=25,DAMPAR)');figure, imshow(J5);title('J5:deconvlucy(A,PSF,NUMIT=40,DAMPAR)');figure, imshow(J6),title('J6:deconvlucy(A,PSF,NUMIT=20,DAMPAR,WEIGHT)');figure, imshow(J7),title('J7:deconvlucy
9、(A,PSF,NUMIT=40,DAMPAR,WEIGHT)');二、维纳滤波维纳滤波法是由Wiener首先提出的,在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。维纳滤波最开始主要应用在一维信号处理里,取得了比较不错的效果。之后,维纳滤波法也用于二维信号处理中,也取得了比较好的效果。维纳滤波器寻找一个统计误差函数:最小的估计。E是期望值操作符,是未退化的图像。该表达式在频域可表示为其中,表示退化函数表示的复共轭表示噪声的功率谱表示未退化图像的功率谱比率称为信噪功率比。在IPT中维纳滤波使用函数deconvwnr来实现的。维纳滤波能最佳复原的条件是要求已知
10、模糊的系统函数,噪声功率谱密(或其自相关函数),原图像功率谱密度(或其自相关函数)。但实际上,原图像功率谱密度(或其自相关函数)一般难以获知,再加上维纳滤波是将图像假设为平稳随机场的前提下的最佳滤波,而实际的图像通常不能满足此前提。因此维纳滤波复原算法在实际中只能获得次最佳实施,它更多的是具有理论价值,被用作度量其他算法性能优劣的标杆。维纳滤波复原函数deconvwnr()的调用格式:J=deconvwnr(I,PSF,NCORR,ICORR)其中,I表示输入图像,PSF表示点扩散函数,NSR(默认值为0)、NCORR和ICORR都是可选参数,分别表示信噪比、噪声的自相关函数、原始图像的自相关
11、函数。输出参数J表示复原后的图像。维纳滤波复原源代码:% 维纳滤波在图像复原中的应用clcclearclose allI=imread('pout.tif'); % 原始图像noise=5*randn(size(I); % randn(1,lx)表示生成1*lx的矩阵,矩阵的每个元素都是随机数noise=noise-min(min(noise); % randn(size(I)是返回一个和A有同样维数大小的随机数组J=double(I)+noise; R1=wiener2(J,10 10); % 未知噪声R2=wiener2(J,10 10,noise); % 已知噪声分布fi
12、guresubplot(2,2,1),imshow(uint8(I);title('原始图像');subplot(2,2,2),imshow(uint8(J);title('退化图像');subplot(2,2,3),imshow(uint8(R1);title('盲复原');subplot(2,2,4),imshow(uint8(R2);title('非盲复原');三、正则滤波另一个线性复原的方法称为约束的最小二乘方滤波,在IPT中称为正则滤波,并且通过函数deconvreg来实现。在最小二乘复原处理中,常常需要附加某种约束条件
13、。例如令Q为f的线性算子,那么最小二乘方复原的问题可以看成使形式为的函数,服从约束条件的最小化问题,这种有附加条件的极值问题可以用拉格朗日乘数法来处理。寻找一个,使下述准则函数为最小:式中叫拉格朗日系数。通过指定不同的Q,可以得到不同的复原目标。实验结果如下:正则滤波所用的源代码:clcclearclose allI=imread('E:lena512color.tif');subplot(321), imshow(I),title('Original Image');I1=rgb2gray(I);subplot(322),imshow(I1),title(
14、39;Gray Image');PSF=fspecial('gaussian',7,10);V=.01;H=imfilter(I1,PSF);BlurredNoisy=imnoise(H,'gaussian',0,V);NOISEPOWER=V*prod(size(I1);J, LAGRA = deconvreg( BlurredNoisy, PSF,NOISEPOWER);K = deconvreg(BlurredNoisy, PSF,LAGRA/10);K0=deconvreg(BlurredNoisy, PSF,LAGRA*10);subplot(
15、323),imshow(BlurredNoisy);title('A=Blurred and Noisy');subplot(324),imshow(J);title('J LAGRA=deconvreg(A,PSF,NP)');subplot(325);imshow(K);title('deconvreg(A,PSF,0.1*LAGRA)');subplot(326);imshow(K0);title('deconvreg(A,PSF,10*LAGRA)');四、盲反卷积在图像复原过程中,最困难的问题之一是,如何获得PSF的恰当
16、估计。那些不以PSF为基础的图像复原方法统称为盲去卷积。它以MLE为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。工具箱通过函数deconvblind来执行盲区卷积。实验如下:% 盲反卷积图像复原clcclearclose allI=imread('E:lena512color.tif');subplot(321),imshow(I),title('Original Image');I=rgb2gray(I);subplot(322),imshow(I),title('Gray Image');PSF=fspecial('ga
17、ussian',7,10); % PSF=7x7V=.0001;BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);BlurredNoisy=double(BlurredNoisy);WT=zeros(size(I);WT(5:end-4,5:end-4)=1; % 从第五行到倒数第五行,第五列到倒数第五列全部置为1INITPSF=ones(size(PSF); % INITPSF=ones(7x7)FUN=inline('PSF+P1','PSF','P1');J,P=deconvblind(BlurredNoisy,INITPSF,5,10*sqrt(V),WT,FUN,0); % 迭代5次K,P=deconvblind(BlurredNoisy,INITPSF,10,10*sqrt(V),WT,FUN,0); % 迭代10次L,P=deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FU
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三门峡社会管理职业学院《小学语文课程教学与研究》2023-2024学年第二学期期末试卷
- 山西应用科技学院《公共管理导论》2023-2024学年第二学期期末试卷
- 2024年6月浙江选考化学试题分析及20题评分细则
- 沧州职业技术学院《大数据技术开源架构》2023-2024学年第二学期期末试卷
- 安徽大学《大数据分析综合实训》2023-2024学年第二学期期末试卷
- 湖南女子学院《信息安全法规与安全管理》2023-2024学年第二学期期末试卷
- 淮南联合大学《计算机导论A》2023-2024学年第二学期期末试卷
- 哈尔滨剑桥学院《山东红色文化与当代价值》2023-2024学年第二学期期末试卷
- 山东服装职业学院《应用开发课程设计》2023-2024学年第二学期期末试卷
- 山东财经大学东方学院《中国传统文化与传统建筑》2023-2024学年第二学期期末试卷
- 机动车驾驶员体检表
- 阳江海上风电项目建议书
- 大学本科毕业设计毕业论文-网上药店管理系统的设计与实现
- DBJ∕T 13-264-2017 福建省石砌体结构加固技术规程
- 洞口县黄桥镇污水处理厂入河排污口设置论证报告
- T∕CGMA 081001-2018 整体式高速齿轮传动装置通用技术规范
- 核事故现场处置中的洗消问题
- FeNO测定及应用
- 铁路货车运用常见故障讲课讲稿
- 配电房值班电工技能考核(答案)
- 耐高压PICC置管
评论
0/150
提交评论