




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录一、设计题目1二、系统的工作原理2三、BP神经网络33.1 BP神经网络结构33.2 BP网络学习算法4四、基于BP神经网络的PID控制器64.1 PID控制器64.2基于BP神经网络的PID控制器7五、程序代码及结果分析105.1程序代码105.2仿真结果13六、结论15一、设计题目柴油-电力机车传动电机的转速控制柴油机有着十分广泛的用途,它可用来驱动内燃机车的传动电机,从而保证重型列车的正常运行。但是柴油机的工作效率对转速非常敏感,因此为了提高其工作效率,应该控制传动电机的转速。图中给出了柴油内燃机车的电力传动模型。柴油机wrvrv0vd常量放大器if Lf Rf ia La Ra 发
2、电机电机测速机负载w0,J,bvfVg图1-1 转速控制模型移动输入电位计的游标,可设置控制阀的位置,从而设定传动电机的预期转速wr。负载转速w0是受控变量,其实际值由测速机测量。测速机由电机轴上的皮带驱动,其输出电压v0是系统的反馈变量。由于输入电位计提供了预期参考电压,由此可求得参考电压与反馈电压间的偏差为( vr - v0 )。放大器将偏差电压放大后,生成电压信号vf,并用作直流发电机的线圈磁场电压。在电力传动系统中,柴油机的输出转速恒为wq,直流发电机由柴油机驱动,其输出电压Vg是电枢控制直流电机的驱动电压。此外电枢控制直流电机的励磁磁场电流i也保持恒定不变。在上述条件下,由于VR的作
3、用,直流电机将产生力矩T,并使负载转速w0逐渐趋近于预期转速wr。已知:l 电机的反电动势系数为Kb31/50;l 与电机有关的参数为J=1,b=1,La=0.2,Ra=1;l 发电机有关的参数为励磁电阻Rf=1,励磁电感Lf=0.1,Lg=0.1,Rg=1;l 测速机增益Kt=1;l 发电机常数Kg,电机常数Km自定;二、系统的工作原理本系统利用移动输入电位计的游标,可设置控制阀的位置,从而设定传动电机的预期转速wr,在移动输入电位计两端加有电源,每当游标移动一定距离,电位计上输出电压也跟随变化,该变化的电压(由输入电位计提供的的预期参考电压)与电动机反馈回来的电压值v0进行比较,得到一个电
4、压差vr - v0。电压差V1输入运算放大器K,根据放大器“虚短”与“虚亏”方法,放大器K的放大系数为540,电压差V1经过放大器K放大后输出电压信号V2,并用作直流发电机的线圈磁场电压。在电力传动系统中,柴油机的输出转速恒为wq,直流发电机由柴油机驱动,其输出电压Vg是电枢控制直流电机的驱动电压,直流电机带动负载转动并由测速机测量其实际转速w0。测速机由电机轴上的皮带驱动,其输出电压v0是系统的反馈变量。此外电枢控制直流电机的励磁磁场电流i也保持恒定不变。其中,控制系统的被控对象是电动机,发电机;被控量是电压;系统的输入量为转速wr,输出量为转速w0;给定量是移动输入电位计,功率放大器K,测
5、速发电机。系统模型及结构图如下:功率放大器直流发电机电枢控制电路传感器r(t)期望转速负载转速0(t)+ 图 2-1 系统模型540 1图2-2 系统结构图 系统传递函数求解:由上述框架结构图可以看出该系统为一个四阶系统,为求解方便将其化简成一个二阶系统(除去不大的极点),其结构框图如下图2.3:54010.62图2-3 化简后的系统传递函数结构图简化思路如下:由于励磁电感远小于励磁电阻,故励磁电感可以忽略。建立系统的数学模型和传递函数一般表达式:比较电路 V1=Vr-V0;(Vr输入电压,V1为偏差电压)回馈电路 电机的反电动势系数为Kb31/50;放大电路 V10=1.5(正常工作点);V
6、2=2e3v1发电机电路:电机电路:测速电路:测速机增益Kt=1;所以系统的开环传递函数为:系统的闭环传递函数为:三、BP神经网络3.1 BP神经网络结构大脑是一部不寻常的智能机,它能以惊人的高速度解释感觉器官传来的含糊不清的信息。它能觉察到喧闹房间内的窃窃私语,能够识别出光线暗淡的胡同中的一张面孔,更能通过不断地学习而产生伟大的创造力。所谓神经网路系统是利用工程技术手段模拟人脑神经网络的结构和功能的一种技术系统,它是一种大规模并行的非线性动力学系统。严格地讲神经网络应该称为人工神经网络,为了简化起见,一般省略人工二字直接称神经网络,可简记为 NN(Neural Network)。由于神经网络
7、具有信息的分布存储、并行处理以及自学习等优点,所以它在信息处理、模式识别,智能控制等领域有着广阔的应用前景。人工神经网络的着眼点不是利用物理器件来完整的复制生物体中细胞网络,而是采纳其可利用的部分来解决目前计算机或其它系统不能解决的问题,如学习、识别、控制和专家系统等。随着生物和认知科学的发展,人们对人脑的结构和认知过程的了解越来越深入,促进了人工神经网络技术的发展,越来越多的生物特性将被利用到工程中去。图3-1 BP神经网络结构图BP神经网络结构如图3-1所示。由图可见,BP网络是一种具有三层或三层以上神经元的神经网络,包括输入层、中间层和输出层。上下层之间实现全连接,而每层神经元之间无连接
8、。当一对学习样本提供给网络后神经元的激活值从输入层经中间层向输出层传播,在输出层的各神经元获得网络的输入响应。接下来,按照减少目标输出与实际输出之间误差的方向,从输出层反向经过各中间层回到输入层,从而逐层修正各连接权值,这种算法称为“误差反向传播算法”,即BP算法。随着这种误差逆向的传播修正不断进行,网络对输入模式响应的正确率也不断上升。与感知器不同的是,由于误差反向传播中会对传递函数进行求导计算,BP网络的传递函数要求必须是可微的,所以不能使用感知器网络中的硬闭值传递函数,常用的有sigmoid型对数、正切函数或线性函数。由于传递函数是处处可微的,所以对BP网络来说,一方面,所划分的区域不再
9、是一个线性划分,而是由一个非线性超平面组成的区域,它是比较平滑的曲面,因而它的分类比线性划分更加精确,容错性也比线性划分更好;另一方面,网络可以严格采用梯度下降法进行学习,权值修正的解析式十分明确。3.2 BP网络学习算法设有n个输入节点,;q个输出节点,;网络层的隐含节点有p个神经元。输入层第i个单元至隐含层第j个单元连接权。隐含层第j个单元至输出层第t个单元连接权。隐含层各单元的阈值为,输出层各个单元的阈值为,在训练该网络的学习阶段,设有N组训练样本,先假定用其中的某一固定样本k输入输出模式对网络进行训练。输入层:n个输入,;也就是输入样本。中间层: (1);j=1,2p(2)输出层:;t
10、=1,2,q(3)(4)为了模拟生物神经元的非线性特性,激励函数常选用s函数(5)S函数不但具有可微分性,而且具有饱和非线性特性,这又增强了网络的非线性映射能力。S函数的微分函数为:=(6)单元输出闭值是为模拟神经元的闭值电位而设置的,在网络的学习过程中,它和各连接权一样不断的被修正。阂值的作用反应在S函数的输出曲线上,使曲线向左平移了阂值大小的单位,它起到了调节神经元兴奋水平的作用。定义第N个标准模式的误差函数为: (7)学习过程按使误差Ek减少最快的方向调整权值系数,直到获得满意的权值为止。根据梯度下降原则使连接权的调整量与的负值称比例,连接权的修正公式如下: 式中t=l,2,.q;j=l
11、,2,p;0<<1(8)相应的闭值公式为:(9)若连接权值不直接作用于输出层神经元,情况就有所不同了,但仍按梯度下降法(10)(11)(12)于是(13)同理(14)BP网络学习算法计算步骤如下:(l)初始化,置所有的连接权值,为随机数(2)提供训练集,即给出顺序赋值的输入向量和期望的输出向量。(3)计算中间层和输出层的各神经元实际输出。(4)计算期望输出与实际输出的偏差。(5)计算和,调整中间层至输出层的连接权和闭值。(6)计算和,调整输入层至中间层的连接权和闭值。(7)返回2,直至误差满意为止。四、基于BP神经网络的PID控制器4.1 PID控制器PID 控制器是一个在工业控制
12、应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。4.2基于BP神经网络的PID控制器BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明了。通过神经网络自学习的能力,可以找到某一最优控制规律下的P、I、D参数。基于BP神经网络的PID控
13、制系统结构如图3-1所示。控制器有两部分组成:(1)经典的PID控制器,直接对被控对象过程闭环控制,并且三个参数Kp,Ki,Kd为在线整定式;(2)神经网络NN:根据系统的运行状态,调节PID控制的参数,以期望达到某种性能指标的最优化。即使输出层神经元的输出状态对应于PID控制器的三个参数Kp,Ki,Kd,通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制规律下的PID控制参数。图4- 1基于BP神经网络的PID控制系统结构图增量式PID控制算法描述如下: (15)在上式中Kp、Ki、Kd分别为比例、积分和微分系数;e(k)为系统实际输出和期望值之间的误差;u(k)为控制
14、器的输出。BP神经网络的输入变量个数取决于被控系统的复杂程度,输出节点对应的是PID的三个可调参数。由于输出不能为负,所以输出层激活函数取非负的sigmoid函数()隐含层取正负对称的Sigmoid函数()。由此,我们构造一个三层BP网络的结构为3-8-3所设计出的三层BP神经网络结构如图4-2所示:图4-2三层BP神经网络结构图图4-2中,网络输入层的输入、输出为: (16)其中,将网络的输入变量作为控制器的输入,即 (17)网络隐含层的输入、输出为: (18)式中,可,为隐含层加权系数;i=l,2,8;上角标(l)、(2)、(3)分别代表输入层、隐含层、输出层。网络输出层的输入、输出为:
15、(19)式中,输出层输出节点分别对应三个可调参数Kp、Ki、Kd。取性能指标函数为: (20)一般地,按照梯度下降法修正网络的权系数,即按E(k)对加权系数的负梯度方向搜索调整,并附加一使搜索快速收敛全局极小的惯性项 (21)式中,叮为学习速率,a为惯性系数。 (22)又有 (23)则有 (24)由于未知,可以用一个BP网络建立一个被控对象的辨识模型,再用此模型去训练BP网络控制器,以解决权值修正时导数项的计算。本文近似用符号函数取代,从而简化计算。由此带来计算不精确的影响可以通过调整学习速率来补偿。上述分析可得网络输出层加权系数的学习算法为: (25)同理可得到隐含层加权系数的学习方法 (2
16、6)式中,。该控制器控制算法归纳如下:(l)确定BP网络的结构,即确定输入层节点数M和隐含层节点数Q,并给出各层加权系数的初值和,选定学习速率和惯性系数,此时k=1。(2)采样得到和,计算该时刻误差。(3)计算神经网络NN各层神经元的输入、输出,NN输出层的输出即为PID控制器的三个可调参数KP,Ki,Kd。(4)根据式4一17计算PID控制器的输出u(l)。(5)进行神经网络学习,在线调整加权系数和,实现PID控制参数的自适应调整。(6)置k=k+l,返回到(2)。五、程序代码及结果分析5.1程序代码clear all;close all;% 系统参数赋初值%xite=0.000001; %
17、学习速率alfa=0.15; %惯性系数IN=4;H=5;Out=3;%wi=0.50*rands(H,IN); %神经网络权值初始化wi=-0.6534 -0.2842 -0.3906 -0.7250;-0.8085 -0.1476 -0.4470 -0.1870;-1.0428 0.5876 -1.6474 -0.4955;-0.2832 0.0095 -0.5620 -0.1779;0.4151 0.3087 -0.2521 -0.4145;wi_1=wi;wi_2=wi;wi_3=wi;%wo=0.50*rands(Out,H);wo= 0.7588 0.2628 0.5832 -0.
18、1404 -0.1313;-0.1134 0.2961 0.8364 0.2217 0.4520;0.7213 0.4578 0.7684 0.4974 0.3644;wo_1=wo;wo_2=wo;wo_3=wo;x=0,0,0;u_1=0.0;u_2=0.0;u_3=0.0;u_4=0;u_5=0; %PID输出赋初值,为方便后面的y_1=0.0;y_2=0.0;y_3=0.0;y_4=0;y_5=0; %输出给0值error_1=0;error_2=0;Oh=zeros(H,1);I=Oh; %隐含层输入赋初值% 计算%ts=0.09for k=1:1:500time(k)=k*ts;r
19、in(k)=200;Kg=6;Km=4;num=5400*Kg*Km; %Unlinear modelden=1,11+0.62*Km,10+(6.2+5400*Kg)*Km;sys=tf(num,den); %传递函数G(s)离散化dsys=c2d(sys,ts,'z');num,den=tfdata(dsys,'v');yout(k)=-den(3)*y_2-den(2)*y_1+num(3)*u_2+num(2)*u_1; %输出y离散化error(k)=rin(k)-yout(k);xi=error(k),error_1,error_2,1; %输入层给
20、值x(1)=error(k)-error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=x(1);x(2);x(3);I=xi*wi' %隐含层节点输入for j=1:1:HOh(j)=(exp(I(j)-exp(-I(j)/(exp(I(j)+exp(-I(j);end %隐含层活化函数tanhx变成了欧拉形式K=wo*Oh; %输出层节点输入for l=1:1:OutK(l)=exp(K(l)/(exp(K(l)+exp(-K(l); %输出层活化函数变成了欧拉氏求解endkp(k)=K(1);ki(k)=K(2);kd(
21、k)=K(3); %得到kp,ki,kd参数值Kpid=kp(k),ki(k),kd(k);du(k)=Kpid*epid; %计算U(k)u(k)=u_1+du(k);% 反向修正% 输出层dyu(k)=sign(yout(k)-y_1)/(u(k)-u_1+0.0000001);for j=1:1:OutdK(j)=2/(exp(K(j)+exp(-K(j)2;endfor l=1:1:Outdelta3(l)=error(k)*dyu(k)*epid(l)*dK(l); % dJ/dWoendfor l=1:1:Outfor i=1:1:Hd_wo=xite*delta3(l)*Oh(i
22、)+alfa*(wo_1-wo_2);endendwo=wo_1+d_wo+alfa*(wo_1-wo_2);%隐含层for i=1:1:HdO(i)=4/(exp(I(i)+exp(-I(i)2;endsegma=delta3*wo;for i=1:1:Hdelta2(i)=dO(i)*segma(i);endd_wi=xite*delta2'*xi;wi=wi_1+d_wi+alfa*(wi_1-wi_2);%数据更新,循环修正u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_5=y_4;y_4=y_3;y_3=y_2;y_2=y_1;y_1=y
23、out(k);wo_3=wo_2;wo_2=wo_1;wo_1=wo;wi_3=wi_2;wi_2=wi_1;wi_1=wi;error_2=error_1;error_1=error(k);endwi %找到较为合适的权值,缩小调整范围wo% % 绘图%figure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout'); %被控对象yfigure(2);plot(time,error,'r');xlabel('ti
24、me(s)');ylabel('error'); %误差figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u'); %pid输出ufigure(4);subplot(311);plot(time,kp,'r');xlabel('time(s)');ylabel('kp'); %,值subplot(312);plot(time,ki,'g');xlabel('time(s)');ylabel('ki');subplot(313);plot(time,kd,'b');xlabel('time(s)');ylabel('kd');5.2仿真结果图5-1图5-2图5-3图5-4由上面几幅图可以看到,BP神经网络PID控制系统在5s时刻期望输出与实际输出基本吻合,误差也接近于0,在性能上要优于常规PID控制系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理健康试题及答案大全
- 如何建立电商与农业的协同发展机制试题及答案
- 基于SDN的工业互联网平台智能生产质量优化与集成报告
- 金融机构2025年数字化转型中的风险管理与内部控制
- 家具行业理论基础与实际应用结合试题及答案
- 自主品牌电动汽车的竞争优势试题及答案
- 文化素养与数学的试题及答案
- 物理考试复习的最终冲刺试题及答案
- 四川省泸州市天立国际学校2025年高三第5次月考试题语文试题试卷含解析
- 建筑施工安全责任制落实的重要步骤试题及答案
- 烟台某公寓电气设计毕业论文
- 2022全国高考真题化学汇编:专题 烃 卤代烃
- 脑血管病介入诊疗并发症及其处理课件
- 家校共育一年级家长会ppt
- 《微电子学概论》第八章-光电子器件课件
- 化学分析送样单2
- 化工原理教案:6 吸收
- 【高考真题】2022年新高考浙江语文高考真题试卷(Word版含答案)
- 铝镁料仓等施工方案精品
- 目前最准确的通达信缠论分笔公式
- 《丑小鸭》教学设计
评论
0/150
提交评论