




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上MIMO技术原理、概念、现状简介作者: 出处:移动通信在线(0)砖(0)好 更新时间:关 键 词:阅读提示:多入多出(MIMO)或多发多收天线(MTMRA)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是新一代移动通信系统必须采用的关键技术。 多入多出(MIMO)或多发多收天线(MTMRA)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是新一代移动通信系统必须采用的关键技术。 那么MIMO技术究竟是怎样的? 实际上多进多出()技术由来已久
2、,早在年马可尼就提出用它来抗衰落。在70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是90年代由AT&T Bell实验室学者完成的。1995年Teladar给出了在衰落情况下的MIMO容量;1996年Foshinia给出了一种多入多出处理算法对角-贝尔实验室分层空时(D-BLAST)算法;1998年Tarokh等讨论了用于多入多出的空时码;1998年Wolniansky等人采用垂直-贝尔实验室分层空时(V-BLAST)算法建立了一个MIMO实验系统,在室内试验中达到了20 bit/s/Hz以上的频谱利用率,这一频谱利用率在普通系统中极难实现
3、。这些工作受到各国学者的极大注意,并使得多入多出的研究工作得到了迅速发展。 一句话,MIMO(Multiple-Input Multiple-Out-put)系统就是利用多天线来抑制信道衰落。根据收发两端天线数量,相对于普通的SISO(Single-Input Single-Output)系统,MIMO还可以包括SIMO(Single-Input Multi-ple-Output)系统和MISO(Multiple-Input Single-Output)系统。 MIMO的概念 通常,多径要引起衰落,因而被视为有害因素。然而研究结果表明,对于MIMO系统来说,多径可以作为一个有利因素加以利用。M
4、IMO系统在发射端和接收端均采用多天线(或阵列天线)和多通道,MIMO的多入多出是针对多径无线信道来说的。图1所示为MIMO系统的原理图。传输信息流s(k)经过空时编码形成N个信息子流ci(k),I=1,N。这N个子流由N个天线发射出去,经空间信道后由M个接收天线接收。多天线接收机利用先进的空时编码处理能够分开并解码这些数据子流,从而实现最佳的处理。图1 多入多出系统原理特别是,这N个子流同时发送到信道,各发射信号占用同一频带,因而并未增加带宽。若各发射接收天线间的通道响应独立,则多入多出系统可以创造多个并行空间信道。通过这些并行空间信道独立地传输信息,数据率必然可以提高。 MIMO将多径无线
5、信道与发射、接收视为一个整体进行优化,从而实现高的通信容量和频谱利用率。这是一种近于最优的空域时域联合的分集和干扰对消处理。 系统容量是表征通信系统的最重要标志之一,表示了通信系统最大传输率。对于发射天线数为N,接收天线数为M的多入多出(MIMO)系统,假定信道为独立的瑞利衰落信道,并设N、M很大,则信道容量C近似为:C=min(M,N)Blog2(/2) 其中B为信号带宽,为接收端平均信噪比,min(M,N)为M,N的较小者。上式表明,功率和带宽固定时,多入多出系统的最大容量或容量上限随最小天线数的增加而线性增加。而在同样条件下,在接收端或发射端采用多天线或天线阵列的普通智能天线系统,其容量
6、仅随天线数的对数增加而增加。相对而言,多入多出对于提高无线通信系统的容量具有极大的潜力。 可以看出,此时的信道容量随着天线数量的增大而线性增大。也就是说可以利用信道成倍地提高无线信道容量,在不增加带宽和天线发送功率的情况下,频谱利用率可以成倍地提高。利用技术可以提高信道的容量,同时也可以提高信道的可靠性,降低误码率。目前技术领域另一个研究热点就是空时编码。常见的空时码有空时块码、空时格码。空时码的主要思想是利用空间和时间上的编码实现一定的空间分集和时间分集,从而降低信道误码率。 MIMO研究状况 目前,各国学者对于MIMO的理论、性能、算法和实现的各方面正广泛进行研究。在MIMO系统理论及性能
7、研究方面已有一批文献,这些文献涉及相当广泛的内容。但是由于无线移动通信MIMO信道是一个时变、非平稳多入多出系统,尚有大量问题需要研究。比如说,各文献大多假定信道为分段-恒定衰落信道。这对于宽带信号的4G系统及室外快速移动系统来说是不够的,因此必须采用复杂的模型进行研究。已有不少文献在进行这方面的工作,即对信道为频率选择性衰落和移动台快速移动情况进行研究。再有,在基本文献中,均假定接收机精确已知多径信道参数,为此,必须发送训练序列对接收机进行训练。但是若移动台移动速度过快,就使得训练时间太短,这样快速信道估计或盲处理就成为重要的研究内容。 另外实验系统是MIMO技术研究的重要一步。实际系统研究
8、的一个重要问题是在移动终端实现多天线和多路接收,学者们正大力进行这方面的研究。由于移动终端设备要求体积小、重量轻、耗电小,因而还有大量工作要做。目前各大公司均在研制实验系统。 Bell实验室的BLAST系统4是最早研制的MIMO实验系统。该系统工作频率为1.9 GHz,发射8天线,接收12天线,采用D-BLAST算法。频谱利用率达到了25.9 bits/(Hzs)。但该系统仅对窄带信号和室内环境进行了研究,对于在3G、4G应用尚有相当大距离。在发送端和接收端各设置多重天线,可以提供空间分集效应,克服电波衰落的不良影响。这是因为安排恰当的多副天线提供多个空间信道,不会全部同时受到衰落。在上述具体
9、实验系统中,每一基台各设置2副发送天线和3副接收天线,而每一用户终端各设置1副发送天线和3副接收天线,即下行通路设置23天线、上行通路设置13天线。这样与“单输入/单输出天线”SISO相比,传输上取得了1020dB的好处,相应地加大了系统容量。而且,基台的两副发送天线于必要时可以用来传输不同的数据信号,用户传送的数据速率可以加倍。 朗讯科技的贝尔实验室分层的空时()技术是移动通信方面领先的应用技术,是其智能天线的进一步发展。BLAST技术就其原理而言,是利用每对发送和接收天线上信号特有的“空间标识”,在接收端对其进行“恢复”。利用BLAST技术,如同在原有频段上建立了多个互不干扰、并行的子信道
10、,并利用先进的多用户检测技术,同时准确高效地传送用户数据,其结果是极大提高前向和反向链路容量。BLAST技术证明,在天线发送和接收端同时采用多天线阵,更能够充分利用多径传播,达到“变废为宝”的效果,提高系统容量。理论研究业已证明,采用BLAST技术,系统频谱效率可以随天线个数成线性增长,也就是说,只要允许增加天线个数,系统容量就能够得到不断提升。这也充分证明BLAST技术有着非常大的潜力。 鉴于对于无线通信理论的突出贡献,BLAST技术获得了2002年度美国Thomas Edison(爱迪生)发明奖。2002年10月,世界上第一颗BLAST芯片在朗讯公司贝尔实验室问世,贝尔实验室研究小组设计小
11、组宣布推出了业内第一款结合了贝尔实验室Layered Space Time (BLAST) MIMO技术的芯片,这一芯片支持最高44的天线布局,可处理的最高数据速率达到19.2Mbps。该技术用于移动通信,BLAST芯片使终端能够在3G移动网络中接收每秒19.2兆比特的数据,现在,朗讯科技已经开始将此BLAST芯片应用到其Flexent OneBTS家族的系列基站中,同时还计划授权终端制造商使用该BLAST芯片,以提高无线3G数据终端支持高速数据接入的能力。 2003年8月,Airgo Networks推出了AGN100 Wi-Fi芯片组,并称其是世界上第一款集成了多入多出(MIMO)技术的批
12、量上市产品。AGN100使用该公司的多天线传输和接收技术,将现在Wi-Fi速率提高到每信道108Mbps,同时保持与所有常用Wi-Fi标准的兼容性。 该产品集成两片芯片,包括一片Baseband/MAC芯片(AGN100BB)和一片RF芯片(AGN100RF),采用一种可伸缩结构,使制造商可以只使用一片RF芯片实现单天线系统,或增加其他RF芯片提升性能。该芯片支持所有的802.11 a、b和g模式,包含IEEE 802.11工作组推出最新标准(包括TGi安全和TGe质量的服务功能)。 Airgo的芯片组和目前的Wi-Fi标准兼容,支持802.11a, b,和g模式,使用三个5-GHz和三个2.
13、4-GHz天线,使用Airgo芯片组的无线设备可以和以前的802.11设备通讯,甚至可以在以54Mbps的速度和802.11a设备通讯的同时还可以以108Mbps的速度和Airgo的设备通讯。 凭借在提高系统频谱利用率方面卓越的性能表现,多输入多输出(MIMO)技术已经成为移动通信技术发展进程中炙手可热的课题。 MIMO技术概述作者: 出处:(0)砖(0)好 更新时间:关 键 词:阅读提示:MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高
14、的接收可靠性。 MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到 ,单天线衰落信道的平均误差概率为 。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰
15、落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。 分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据速率,这被成为空间复用。需要特别指出的是在高SNR的情况下,传输速率是自由度受限的,此时对于m根发射天线n根接
16、收天线,并且天线对之间是独立均匀分布的瑞利衰落的。 根据子数据流与天线之间的对应关系,空间多路复用系统大致分为三种模式:D-BLAST、V-BLAST以及T-BLAST。 D-BLAST最先由贝尔实验室的Gerard J. Foschini提出。原始数据被分为若干子流,每个子流之间分别进行编码,但子流之间不共享信息比特,每一个子流与一根天线相对应,但是这种对应关系周期性改变,如图1.b所示,它的每一层在时间与空间上均呈对角线形状,称为D-BLAST(Diagonally- BLAST)。D-BLAST的好处是,使得所有层的数据可以通过不同的路径发送到接收机端,提高了链路的可靠性。其主要缺点是,
17、由于符号在空间与时间上呈对角线形状,使得一部分空时单元被浪费,或者增加了传输数据的冗余。如图1.b所示,在数据发送开始时,有一部分空时单元未被填入符号(对应图中右下角空白部分),为了保证D-BLAST的空时结构,在发送结束肯定也有一部分空时单元被浪费。如果采用burst模式的数字通信,并且一个burst的长度大于M(发送天线数目)个发送时间间隔 ,那么burst的长度越小,这种浪费越严重。它的数据检测需要一层一层的进行,如图1.b所示:先检测c0、c1和c2,然后a0、a1和a2,接着b0、b1和b2 另外一种简化了的BLAST结构同样最先由贝尔实验室提出。它采用一种直接的天线与层的对应关系,
18、即编码后的第k个子流直接送到第k根天线,不进行数据流与天线之间对应关系的周期改变。如图1.c所示,它的数据流在时间与空间上为连续的垂直列向量,称为V-BLAST(Vertical-BLAST)。由于V-BLAST中数据子流与天线之间只是简单的对应关系,因此在检测过程中,只要知道数据来自哪根天线即可以判断其是哪一层的数据,检测过程简单。 考虑到D-BLAST以及V-BALST模式的优缺点,一种不同于D-DBLAST与V-BLAST的空时编码结构被提出:T-BLAST。等文献分别提及这种结构。它的层在空间与时间上呈螺纹(Threaded)状分布,如图2所示。原始数据流被多路分解为若干子流之后,每个
19、子流被对应的天线发送出去,并且这种对应关系周期性改变,与D-BLAST系统不同的是,在发送的初始阶段并不是只有一根天线进行发送,而是所有天线均进行发送,使得单从一个发送时间间隔 来看,它的空时分布很像V-BALST,只不过在不同的时间间隔中,子数据流与天线的对应关系周期性改变。更普通的T-BLAST结构是这种对应关系不是周期性改变,而是随机改变。这样T-BLAST不仅可以使得所有子流共享空间信道,而且没有空时单元的浪费,并且可以使用V-BLAST检测算法进行检测。 智能天线/MIMO/BLAST技术介绍(1)作者: 常疆 出处:(0)砖(0)好 更新时间:关 键 词:阅读提示:近年来,随着用户
20、规模扩大和业务种类多样化,无线运营商对无线系统语音和高速数据提供能力的要求也相应提高了许多。为了满足这些要求,必须有新的技术出现并应用,以最大程度地提高现有带宽内的容量,提高频谱利用率。 近年来,随着用户规模扩大和业务种类多样化,无线运营商对无线系统语音和高速数据提供能力的要求也相应提高了许多。为了满足这些要求,必须有新的技术出现并应用,以最大程度地提高现有带宽内的容量,提高频谱利用率。 第三条路 在为一个CDMA网络做链路预算的过程中,朗讯科技认为必须考虑到小区负载问题,并且也是这样去做的。通常情况下,一个CDMA系统的初始小区负载会设计为最大容量的50到60,这在系统初初运营时是必要的。而
21、当系统达到设计容量的满应用时,运营商就必须考虑增加新的容量点,以弥补小区覆盖的损失。 在此情况下,有两种方法可以选择: 一是通过增加新站址来增加覆盖率和容量,这样不仅在技术上相当困难,而且代价昂贵; 另一种可行方法则是更为充分地利用现有站址,即在其上增加新的载波,这也会增加相当昂贵的运营成本,因为对运营商来说无线频谱无疑是非常珍贵的资源。 从长远发展的需要来看,还有第三条路可走,即采用最为经济高效的方法,通过在最初设计时改进链路预算,增加容量。朗讯科技的智能天线技术正是为无线运营商提供的这样一种选择。在网络发展的过程中适时适地地部署这一解决方案,完全可以避免整个网络的重新设计,而在原有网络基础
22、之上极大提升系统的容量。 技术的三种演进 目前无线网络多采用固定波束天线,通常是3扇区配置。朗讯科技智能天线技术将在现有系统基础上,提供指向被服务用户的动态波束,改善网络链路预算,提高系统容量。 依靠贝尔实验室的强大技术支持,朗讯科技正积极研发先进的智能天线技术,以期为客户提供相关服务,尤其是其MIMO/BLAST技术,更可广泛应用于CDMA2000网络和UMTS/WCDMA 网络,提升网络质量。朗讯科技智能天线解决方案有三种演进技术:一是发送分集和2-Branch智能接收天线,二是波束赋形发送分集和4-Branch智能接收天线,三是MIMO/BLAST和多用户接收。在这三种技术中,后面的技术
23、可以提供较前一种技术更大的系统增益。其对比如图1所示。 MIMO/BLAST技术 凭借在提高系统频谱利用率方面卓越的性能表现,多输入多输出(MIMO)技术已经成为移动通信技术发展进程中炙手可热的课题,而作为MIMO技术的杰出代表,朗讯科技的BLAST技术更以其突破性的优异性能成为业界焦点。 传统无线通信理论一直将多径传播视为造成无线信号衰落的干扰之一。而朗讯科技BLAST技术则证明,在天线发送和接收端同时采用多天线阵,更能够充分利用多径传播,达到“变废为宝”的效果,提高系统容量。就其原理而言,是利用每对发送和接收天线上信号特有的“空间标识”,在接收端对其进行“恢复”。利用BLAST技术,如同在原有频段上建立了多个互不干扰、并行的子信道,并利用先进的多用户检测技术,同时准确高效地传送用户数据,其结果是极大提高前向和反向链路容量,如图2所示。理论研究业已证明,采用BLAST技术,系统频谱效率可以随天线个数成线性增长,也就是说,只要允许增加天线个数,系统容量就能够得到不断提升。这也充分证明BLAST技术有着非常大的潜力。 鉴于对于无线通信理论的突出贡献,BLAST技术获得了2002年度美国Thomas Edison(爱迪生)发明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年土地长期租赁合同模板
- 2025房地产买卖合同关键条款解析
- 2025如何正确签订股权转让合同
- 大学篮球赛的活动总结模版
- 2025塑料制品销售合同范本
- 2025汽车销售合同范本3
- 2025年成都房屋租赁合同
- 假离婚夫妻协议书
- 生态渔业合作开发与管理责任合同
- 消防设备故障判断与处理试题及答案
- 《杀死一只知更鸟》好书分享
- 软装清洗行业分析
- 健康饮食与体重管理
- word个人简历空白
- 大学生创业计划书智能农业技术项目
- 2018大截面导线压接工艺导则
- 量子计算与量子信息简介
- 中考数学二元一次方程专题训练100题(含答案)
- 【教师共享】《羽毛球》教学评价及评价建议
- DB13-T 5742-2023醇基燃料使用安全规范
- 尾矿库安全生产风险监测预警系统运行管理办法
评论
0/150
提交评论