




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、极限的运算教学目标1熟练运用极限的四则运算法则,求数列的极限2理解和掌握三个常用极限及其使用条件培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力3正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想教学重点与难点使用极限四则运算法则及3个常用极限时的条件教学过程(一)运用极限的四则运算法则求数列的极限师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限:=0,C=C,qn=0(|q|<1)来解决。例1:求下列极限: 师:(1)中的式子如何转化才能求出极限生:可以分子、分母同除以n3,就能够求出极限
2、师:(2)中含有幂型数,应该怎样转化?师:分子、分母同时除以3n-1结果如何?生:结果应该一样师:分子、分母同时除以2n或2n-1,能否求出极限?(二)先求和再求极限例2 求下列极限:由学生自己先做,教师巡视判断正误生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况此题当n,和式成了无限项的和,不能使用运算法则,所以解法1是错的师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限第(2)题应该怎样做?生:用等比数列的求和公式先求出分母的和=12师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别
3、注意极限四则运算法则的适用条件例3求下列极限:师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策生:(1)题是连乘积的形式,可以进行约分变形生:(2)题是分数和的形式,可以用“裂项法”变形例4设首项为1,公比为q(q0)的等比数列的前n项和为Sn,师:等比数列的前n项和Sn怎样表示?师:看来此题要分情况讨论了师:综合两位同学的讨论结果,解法如下:师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化同(三)公比绝对值小于1的无穷等比数列前n项和的极限师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于1的无穷等比数列各项和的公式
4、:例5计算:题目不难,可由学生自己做师:(1)中的数列有什么特点?师:(2)中求所有奇数项的和实质是求什么?(1)所给数列是等比数列;(2)公比的绝对值小于1;(四)利用极限的概念求数的取值范围师:(1)中a在一个等式中,如何求出它的值生:只要得到一个含有a的方程就可以求出来了师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限师:(2)中要求m的取值范围,如何利用所给的等式?|q|1,正好能得到一个含有m的不等式,解不等式就能求出m的范围解得0m4师:请同学归纳一下本课中求极限有哪些类型?生:主要有三种类型:(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求
5、数列的前n项和,再求数列的极限;(3)求公比绝对值小于1的无穷等比数列的极限师:求数列极限应注意的问题是什么?生甲:要注意公式使用的条件生乙:要注意有限项和与无限项和的区别与联系上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充(五)布置作业1填空题:2选择题:则x的取值范围是 的值是 A2 B-2 &
6、#160; C1 D-1作业答案或提示(7)a2选择题:(2)由于所给两个极限存在,所以an与bn的极限必存在,得方程以上习题教师可以根据学生的状况,酌情选用课堂教学设计说明1掌握常用方法,深化学生思维数学中对解题的要求,首先是学生能够按部就班地进行逻
7、辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用例1的设计就是以此为目的的2展示典型错误,培养严谨思维第二课时 数列极限的运算性质教学目标:1、掌握数列极限的运算性质;会利用这些性质计算数列的极限 2、掌握重要的极限计算公式:lim(1+1/n)n=e教学过程:一、 数列极限的运算性质如果liman=A,limbn=B,那么(1)lim(an+bn)= liman+ limbn =A+B(2)lim(an-bn)= liman- li
8、mbn =A-B(3)lim(an·bn)= liman· limbn =A·B(4)lim(an/bn)= liman/ limbn =A/B(B¹0,bn¹0)注意:运用这些性质时,每个数列必须要有极限,在数列商的极限中,作为分母的数列的项及其极限都不为零。数列的和的极限的运算性质可推广为:如果有限个数列都有极限,那么这有限个数列对应各项的和所组成的数列也有极限,且极限值等于这有限个数列的极限的和。类似地,对数列的积的极限的运算性质也可作这样的推广。注意:上述性质只能推广为有限个数列的和与积的运算,不能推广为无限个数列的和与积。二、 求数列
9、极限1、 lim(5+1/n)=5 2、lim(n2-4)/n2=lim(1-4/n2)=13、 lim(2+3/n)2=4 4、lim(2-1/n)(3+2/n)+(1-3/n)(4-5/n)=105、lim(3n2-2n-5)/(2n2+n-1)=lim(3-2/n-5/n2)/(2+1/n-1/n2)=3/2分析:由于lim(3n2-2n-5)及lim(2n2+n-1)都不存在,因此不能直接应用商的极限运算性质进行计算。为了能应用极限的运算性质,可利用分式的性质先进行变形。在变形时分子、分母同时除以分子、分母中含n的最高次数项。4、 一个重要的数列极限我们曾经学过自然对数的底e»
10、;2.718,它是一个无理数,它是数列(1+1/n)n的极限。lim(1+1/n)n =e (证明将在高等数学中研究)求下列数列的极限lim(1+1/n) 2n+1 =lim(1+1/n)n ·(1+1/n)n ·(1+1/n)=e·e·1=e2lim(1+3/n)n =lim(1+1/(n/3)n/3 3=e3分析:在底数的两项中,一项为1,另一项为3/n,其中分子不是1,与关于e的重要极限的形式不相符合,为此需要作变形。其变形的目标是将分子中的3变为1,而不改变分式的值。为此可在3/n的分子、分母中同时除以3,但这样又出现了新的矛盾,即分母中的n/3
11、与指数上的n以及取极限时n®¥不相一致,为此再将指数上的n改成n/3·3,又因为n®¥与n/3®¥是等价的。lim(1+1/(n+1)n=lim(1+1/(n+1)(n+1)-1=lim(1+1/(n+1)n+1/lim(1+1/(n+1)=e练习:计算下列数列的极限lim(3-1/2n)=3 lim(1/n2+1/n-2)(3/n-5/2)=5 lim(-3n2-1)/(4n2+1)=-3/4lim(n+3)(n-4)/(n+1)(2n-3)=1/2 lim(1+3/2n) 2=1 lim(1+1/3n)2 (2-1/(n+1) 3=1·8=8lim(1+1/n)3n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市更新与空间正义-洞察及研究
- 脑机接口技术在虚拟现实中的应用-洞察及研究
- 灌溉活动中的风险分担机制与多利益相关者博弈-洞察及研究
- GB/T 33658-2025室内人体热舒适环境要求与评价方法
- 药品供应链可追溯性伦理探讨-洞察及研究
- 2025年新能源社区能源管理创新-智能微电网应用模式与案例研究
- 6.2 做负责任的人(核心素养教学设计)-道德与法治八年级上册同步高效备课教学设计+教学设计(统编版)
- 3.2《3D设计》教学设计 重大版(2019)初中信息技术七年级下册
- “携手反欺凌,绽放青春光彩”主题班会说课稿
- 2024年二年级品生下册《大师在我身边》说课稿 浙教版001
- 韩餐服务员培训
- 2024年-2025年电梯检验员考试题库及答案
- 新入团团课培训
- 挖掘机安全培训教程
- 高中语文++《兼爱》课件+统编版高中语文选择性必修上册
- 学术论文文献阅读与机助汉英翻译智慧树知到答案2024年重庆大学
- (初级)航空油料特设维修员(五级)理论考试题库-上(单选题)
- 医疗质量医疗安全十八项核心制度培训模板
- 预应力混凝土管桩(L21G404)
- 2023年山西省普通高中学业水平考试真题物理试题(含答案解析)
- 国家职业技术技能标准 4-07-02-05 商务数据分析师S 2024年版
评论
0/150
提交评论