全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为0时3积分定理一般形式初始条件为0时4延迟定理(或称域平移定理)5衰减定理(或称域平移定理)6终值定理7初值定理8卷积定理表A-2 常用函数的拉氏变换和z变换表序号 拉氏变换E(s)时间函数e(t)Z变换E(z)11(t)1234t5 6789101112131415用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设是的有理真分式 ()式中系数,都是实常数;是正整数。按代数定理可将展开为部分分式。分以下两种情况讨论。 无重根这时,F(s)可展开为n个简单的部分分式之和的形式。 (F-1)式中,是特征方程A(s)0的根。为待定常数,称为F(s)在处的留数,可按下式计算: (F-2)或 (F-3)式中,为对的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 (F-4) 有重根设有r重根,F(s)可写为=式中,为F(s)的r重根,, 为F(s)的n-r个单根;其中,, 仍按式(F-2)或(F-3)计算,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年简易劳动合同范本下载
- 2025年个人定期存单质押借款合同
- 2025关于编制商品房买卖合同模板
- 2025标准版买卖合同的模板
- 2025年学法普法知识试题库(附答案解析)
- 2025YY医学院附属Y市Y医院Y采购合同
- 剧情模拟测试题及答案
- 特斯拉协议书
- 门市买卖协议书
- 巴塞尔协议书内容识别
- 2025年学习两会精神应知应会知识测试题附含答案
- 水性涂料项目建设工程方案
- 2025年医养结合养老机构运营中的服务质量评估与改进报告
- 工程资金监管协议书示范文本
- GB/T 46229-2025喷砂用橡胶软管
- 化妆品成分对特定皮肤问题的作用-洞察及研究
- 中药硬膏热贴敷课件
- 拉丁舞伦巴教学课件
- 2025年河北省政府采购评审专家考试真题含答案
- 2025年卫生职称副高级考试《输血技术》副高真题含答案解析
- 给村医培训课件
评论
0/150
提交评论