影响GDP增长的经济因素分析_第1页
影响GDP增长的经济因素分析_第2页
影响GDP增长的经济因素分析_第3页
影响GDP增长的经济因素分析_第4页
影响GDP增长的经济因素分析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、影响GDP增长的经济因素分析 国际经济与贸易 钟颀 405020491978年十一届三中全会以后,在邓小平总设计师的指引下,中国开始了改革开放。改革开放的三十年中,我国GDP逐年增长,经济发展速度令世界瞩目。为更好的了解我国经济增长的原因,现对影响我国GDP增长的经济因素进行了分析。下表提供了我国19782005年的GDP及其主要影响因素的数据。其中Y=GDP(亿元);X1能源消费总量(万吨标准煤);X2就业人员(万人);X3=居民消费水平(元);X4农业总产值(亿元);X5社会消费品零售总额(亿元);X6进出口贸易总额(亿元)ObsX1X2X3X4X5X6Y19785714440152184

2、13971558.63553645.2175197958588410242081697.61800454.64062.5792198060275423612381922.621405704545.624198159447437252642180.622350735.34889.4611198262067452952882483.262570771.35330.4511983660404643631627502849.4860.15985.5516198470904481973613214.133376.412017243.7517198576682498734463619.4943052066

3、.79040.7366198680850512824974013.0149502850.410274.379198786632527835654675.758203084.212050.615198892997543347145865.277440382215036.823198996934553297886534.738101.4415617000.919199098703647498337662.098300.15560.118718.3221991103783654919328157.039415.67225.821826.19919921091706615211169084.71099

4、3.79119.626937.276199311599366808139310995.514270.41127135260.025199412273767455183315750.518622.920381.948108.456199513117668065235520340.923613.823499.959810.529199613894868950278922353.728360.224133.870142.492199713779869820300223788.431252.926967.277653.135199813221470637315924541.933378.126849.

5、783024.281999133830.9771394334624519.135647.929896.288188.9552000138552.5872085363232917.9339105.739273.298000.4542001143199.2173025386937213.4943055.442183.6108068.222002151797.2573740410643499.9148135.951378.2119095.692003174990.374432441129691.852516.370483.51351742004203226.775200492536238.99595

6、0195539.1159586.7200522331975825543939450.8967176.6116921.8183956.1现估计模型为Y=c+A1*X1+A2*X2+A3*X3+A4*X4+A5*X5+A6*X6+U 一、平衡性检验和协整检验将被解释变量Y与解释变量X1、X2、X3、X4、X5、X6进行多元回归,可以得出残差序列e,通过残差序列的线性图形(表1.1): 由图可知,残差序列是有截距无明显趋势的时间序列。因此选择模型2进行单位根检验,结果如下(表1.2):Null Hypothesis: E has a unit rootExogenous: ConstantLag L

7、ength: 0 (Automatic based on SIC, MAXLAG=6)t-Statistic  Prob.*Augmented Dickey-Fuller test statistic-3.149281 0.0347Test critical values:1% level-3.6998715% level-2.97626310% level-2.627420*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(

8、E)Method: Least SquaresDate: 12/17/07 Time: 22:15Sample (adjusted): 1979 2005Included observations: 27 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  E(-1)-0.5340390.169575-3.1492810.0042C-29.52296117.8645-0.2504820.8043R-squared0.284036    Mean depende

9、nt var-18.20297Adjusted R-squared0.255398    S.D. dependent var709.4155S.E. of regression612.1570    Akaike info criterion15.74304Sum squared resid9368406.    Schwarz criterion15.83903Log likelihood-210.5311    F-statist

10、ic9.917968Durbin-Watson stat1.880914    Prob(F-statistic)0.004207由上面的结果可以看出,残差序列e在显著性水平为0.05的条件下,没有通过显著性检验,即e平稳,因此可以得出原模型协整,可以进行下面的回归。二、多重共线性检验 1、检验:利用OLS对以上参数进行估计,结果如下(表2.1.1):Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 20:56Sample: 1978 2005Included observati

11、ons: 28VariableCoefficientStd. Errort-StatisticProb.  C526.04171206.6350.4359570.6673X1-0.0681080.027789-2.4508890.0231X20.0601750.0547801.0985010.2844X312.913811.8696506.9070750.0000X4-0.0405530.054016-0.7507710.4611X50.9890140.1968575.0240230.0001X60.4992210.04415411.306380.0000R-squared

12、0.999887    Mean dependent var51166.32Adjusted R-squared0.999855    S.D. dependent var52735.89S.E. of regression635.9707    Akaike info criterion15.96050Sum squared resid8493633.    Schwarz criterion16.29355Log likelihoo

13、d-216.4470    F-statistic30938.68Durbin-Watson stat1.728146    Prob(F-statistic)0.000000结果分析:可决系数为0.999855,F统计量为30938.68,通过F检验,表明模型拟合优度较好。对于A1、A2、A3、A4、A5、A6,X2和X4的T统计量均小于临界值T0.025(21)=0.435957, 而X1和X4的系数为负,与经济意义和实际情况不符。因此,可初步认为此模型存在严重的多重共线性。六个解释变量的如下简单相关系数矩阵(

14、表):X1X2X3X4X5X6X110.9084887587265750.959220601016032X20.90848875872657510.8753031501153270.8708801885104630.8494794271754850.729465723394794X30.9592206010160320.87530315011532710.9766776942108140.9960884743647970.926876994823225X40.8708801885104630.97667769421081410.9676296414504310.867243928971564X

15、50.8494794271754850.9960884743647970.96762964145043110.953292642725825X60.7294657233947940.9268769948232250.8672439289715640.9532926427258251从上表可以看出,各解释变量之间存在高度线性相关。同时由表1.2又可看出,尽管整体上线性回归拟合较好,但X2, X4变量的参数T值并不显著,表明模型中解释变量确实存在严重的多重共线性。2、修正:运用OLS方法逐一求出Y对各个解释变量的回归,结果如下(表):变量x1x2x3x4x5x6参数估计值1.1580853.612

16、64931.223693.6942342.6484951.704013t统计量18.445357.75800839.2513816.8133696.4994619.28887R(2)0.9290070.6983290.9834040.9157730.9972160.934683R(2)0.9262760.6867270.9827660.9125330.9971090.932171综合分析可见,在六个一元回归模型中,加入X5 的方程R(2)最大,以X5为基础,顺次加入其他变量逐步回归,结果如表(表):x1x2x3x4x5x6R(2)x5 x10.0578862.5256310.997182(+1

17、.294999)(+25.59707)x5 x2-0.1962132.7507510.997612(-2.546525)(+58.19202)x5 x3-12.232623.6748640.998266(-4.283421)(+15.27659)x5 x4-0.5649643.0240760.998466(-4.900573)(+38.18075)x5 x62.2376380.2864180.999595(+65.79107)(-12.67189)经比较,新加入X6的方程R(2)= 0.999595 ,改进最大,而且各参数t值显著,选择保留X6,再加入其它新变量逐步回归,结果如下(表):x1x

18、2x3x4x5x6R(2)x5 x6 x10.0046512.2299840.2848720.999579(+0.260774)(+49.09533)(+11.97611)x5 x6 x20.0087422.228580.2895560.999579(+0.233341)(+42.81782)10.85269x5 x6 x39.4952861.2513410.4185940.9998(+5.152867)(+6.487128)(+13.87153)x5 x6 x4-0.0449462.2853250.2740040.999583(-0.51554)(+23.14678)(+8.238447)在

19、X5、X6基础上加入X3后的方程R(2)明显增大,而且各参数t值显著。加入X1、X2后,虽然R(2)有所上升,但参数检验不显著;加入X4后,不仅t检验不显著,X4的符号不合理。所以选择保留X3,继续逐步回归,结果如下(表):x1x2x3x4x5x6R(2)x5 x6 x3 x1-0.04033815.438510.9849220.4766010.999858(-3.302717)(+6.944039)(+5.434718)(+15.43851)x5 x6 x3 x2-0.06005411.346641.1212610.4228050.999829(-2.269412)6.013285(+5.9

20、92658)(+15.1407)x5 x6 x3 x49.458897-0.0108461.2666280.4150920.999791(+4.997874)(-0.174824)(+5.878828)(+11.29637)加入X1、X2、X4后,不仅参数t值不再全部显著,参数符号也不合理。因此,X1、X2、X4引起严重多重共线性,应予以剔除。剩下的变量为X3、X5、X6,修定模型为:Y=C+A3*X3+A5*X5+A6*X6+U,最后修正严重多重共线性影响的回归结果为(表):Dependent Variable: YMethod: Least SquaresDate: 12/17/07 Ti

21、me: 19:38Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  C-1264.654249.9107-5.0604230.0000X39.4952861.8427195.1528670.0000X51.2513410.1928966.4871280.0000X60.4185940.03017613.871530.0000R-squared0.999822    Mean dependent var5116

22、6.32Adjusted R-squared0.999800    S.D. dependent var52735.89S.E. of regression746.4204    Akaike info criterion16.20002Sum squared resid13371443    Schwarz criterion16.39033Log likelihood-222.8003    F-statistic44917.00D

23、urbin-Watson stat0.979249    Prob(F-statistic)0.000000根据回归结果,得回归模型:Y=-1264.654+9.495286X3+1.251341X5+0.418594X6t =(-5.060423)(5.152867)(6.487128)(13.87153)R(2)=0.999822 R(2)=0.999800F=44917.00 DW=0.979249三、异方差性检验 1、White 检验:表(3.1)White Heteroskedasticity Test:F-statistic0.980384&

24、#160;   Prob. F(9,18)0.487547Obs*R-squared9.210473    Prob. Chi-Square(9)0.418077Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/17/07 Time: 19:57Sample: 1978 2005Included observations: 28VariableCoefficientStd. Errort-StatisticProb. 

25、0;C1037033.794984.11.3044700.2085X3-21662.4113609.43-1.5917210.1289X3211.3772716.261900.6996270.4931X3*X5-1.6362882.998311-0.5457370.5919X3*X60.0319320.4969710.0642530.9495X52129.3051179.7041.8049490.0878X520.0528100.1442880.3660050.7186X5*X6-0.0050260.048723-0.1031590.9190X6-80.84421234.4271-0.3448

26、590.7342X620.0018730.0044350.4223580.6778R-squared0.328945    Mean dependent var477551.5Adjusted R-squared-0.006582    S.D. dependent var498819.6S.E. of regression500458.4    Akaike info criterion29.35689Sum squared resid4.51E+12  

27、;  Schwarz criterion29.83268Log likelihood-400.9965    F-statistic0.980384Durbin-Watson stat2.169849    Prob(F-statistic)0.487547由表知:nR(2)= 9.210473,由White检验知,在=0.05下,查(2)分布表,得临界值(2)0.05(9)=16.919.比较计算的(2)统计量与临界值,因为nR(2)= 9.210473<(2)0.05(9)=16.91

28、9,所以接受原假设,表明模型不存在异方差。2、Arch检验:表(3.2):ARCH Test:F-statistic0.425586    Prob. F(1,25)0.520117Obs*R-squared0.451939    Prob. Chi-Square(1)0.501415Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/17/07 Time: 20:14Sample (adjusted): 1979 2005In

29、cluded observations: 27 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  C392816.1133202.62.9490110.0068RESID2(-1)0.1252500.1919920.6523700.5201R-squared0.016738    Mean dependent var453325.1Adjusted R-squared-0.022592    S.D. dependen

30、t var491248.6S.E. of regression496766.7    Akaike info criterion29.14082Sum squared resid6.17E+12    Schwarz criterion29.23680Log likelihood-391.4010    F-statistic0.425586Durbin-Watson stat2.049189    Prob(F-statistic)0

31、.520117从表知,(n-p)R(2)= 0.451939,由Arch检验知,在=0.05下,查(2)分布表,得临界值(2)0.05(1)=3.841, 比较计算的(2)统计量与临界值,因为(n-p)R(2)= 0.451939<(2)0.05(1)=3.841,所以接受原假设,表明模型不存在异方差。通过White检验和Arch检验,表明模型是不存在异方差的。四、自相关检验 根据表,DW值为0.979249,查DW统计表可知,在=0.05的水平下,dL=1.328,模型中DW< dL,显然存在正自相关。这一点从残差图中也可以看出,如图4.1:在图4.1中,残差的变动有系统模式,连续为正和连续为负,表明残差项存在一阶自相关,模型中t统计量和F统计量的结论不可信,需采取补救措施。为解决自相关问题,选用科克伦-奥克特迭代法。利用Eviews软件,可得回归方程:e(t)= 0.467257e(t-1).由上式可知=0.467257,对原模型进行广义差分,结果如下(表4.2):Dependent Variable: Y-0.467257*Y(-1)Method: Least SquaresDate: 12/17/07 Time: 21:21Sample

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论