《事件的相互独立性》课件(5)_第1页
《事件的相互独立性》课件(5)_第2页
《事件的相互独立性》课件(5)_第3页
《事件的相互独立性》课件(5)_第4页
《事件的相互独立性》课件(5)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.2.2事件的相互事件的相互 独立性(一)独立性(一)高二数学高二数学 选修选修2-3俗话说:俗话说:“三个臭皮匠抵个诸葛亮三个臭皮匠抵个诸葛亮”。 我们是如何来理解这句话的?我们是如何来理解这句话的?明确问题:明确问题: 已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.8,0.8,臭皮匠老大解出问题的概率为臭皮匠老大解出问题的概率为0.5,0.5,老老二为二为0.45,0.45,老三为老三为0.4,0.4,且每个人必须独且每个人必须独立解题,问三个臭皮匠能抵一个诸葛立解题,问三个臭皮匠能抵一个诸葛亮吗?亮吗? 互斥事件互斥事件相互独立事件相互独立事件 不可能同时发生的不可能同时发生

2、的两个事件叫做互斥两个事件叫做互斥事件事件.P(AB)=P(A)+P(B)互斥事件互斥事件A A、B B中中有一个发生,有一个发生,计算计算公式公式 符符号号概念概念记作记作:AB(:AB(或或A+B)A+B)什么叫做互斥事件?什么叫做对立事件什么叫做互斥事件?什么叫做对立事件?两个互斥事件两个互斥事件A、B有一个发生的概率公式是有一个发生的概率公式是什么?什么?若若A与与A为对立事件,则为对立事件,则P(A)与)与P(A)关)关系如何?系如何?P(A+B)=P(A)+(B)P(A)+P()=1复习回顾复习回顾(4).条件概率的概念条件概率的概念(5).条件概率计算公式条件概率计算公式:()(

3、)(|)( )( )n ABP ABP B An AP A复习回顾复习回顾 设事件设事件A和事件和事件B,且,且P(A)0,在已知事件在已知事件A发发生的条件下事件生的条件下事件B发生的概率,叫做发生的概率,叫做条件概率条件概率。 记作记作P(B |A).)|()()(ABPAPABP三张奖券有一张可以中奖。现由三名同学依次无放回地抽取,问:最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗?三张奖券有一张可以中奖。现由三名同学依次有放回地抽取,问:最后一名去抽的同学的中奖概率会受到第一位同学是否中奖的影响吗?同同学学中中奖奖”. . B B表表示示事事件件“最最后后一一名名设A为事

4、件“第一位同学没有中奖”。答:事件A的发生不会影响事件B发生的概率。)()|(BPABP)|()()(ABPAPABP又)()()(BPAPABP设设A,B为两个事件,如果为两个事件,如果)()()(BPAPABP则称事件则称事件A与事件与事件B相互独立。相互独立。1.定义法定义法:P(AB)=P(A)P(B)2.经验判断经验判断:A发生与否不影响发生与否不影响B发生的概率发生的概率 B发生与否不影响发生与否不影响A发生的概率发生的概率判断两个事件相互独立的方法判断两个事件相互独立的方法注意注意:(1)互斥事件互斥事件:两个事件不可能同时发生两个事件不可能同时发生(2)相互独立事件相互独立事件

5、:两个事件的发生彼此互不影响两个事件的发生彼此互不影响想一想想一想 判断下列各对事件的关系判断下列各对事件的关系(1 1)运动员甲射击一次,射中)运动员甲射击一次,射中9 9环与射中环与射中8 8环;环;(2 2)甲乙两运动员各射击一次,甲射中)甲乙两运动员各射击一次,甲射中9 9环与环与乙射中乙射中8 8环;环;互斥互斥相互独立相互独立相互独立相互独立相互独立相互独立(4 4)在一次地理会考中,)在一次地理会考中,“甲的成绩合甲的成绩合格格”与与“乙的成绩优秀乙的成绩优秀”(3)( )0.6,( )0.6,()0.24P AP BP ABAB已已知知则则事事件件 与与思考思考2:甲坛子里有甲

6、坛子里有3 3个白球个白球,2,2个黑球个黑球, ,乙乙坛子里有坛子里有2 2个白球个白球,2,2个黑球个黑球, ,设从甲坛子里设从甲坛子里摸出一个球摸出一个球, ,得出白球叫做事件得出白球叫做事件A,A,从乙坛子从乙坛子里摸出里摸出1 1个球个球, ,得到白球叫做事件得到白球叫做事件B,B,甲甲乙乙ABABABAB事事件件 是是指指_;_;事事件件 是是指指_;_;与与 是是_事事件件;与与 是是_事事件件;与与 是是_填填空空:_事事件件. .从甲坛子里摸出从甲坛子里摸出1个球个球,得到黑球得到黑球从乙坛子里摸出从乙坛子里摸出1个球个球,得到黑球得到黑球相互独立相互独立相互独立相互独立相互

7、独立相互独立也都相互独立与与与那么相互独立与如果事件BABABABA,A与与B是相互独立事件是相互独立事件. 即两个相互独立事件同时发生的概率,即两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积。等于每个事件发生的概率的积。2.2.推广:如果事件推广:如果事件A A1 1,A A2 2,A An n相互独立相互独立,那,那么这么这n n个事件同时发生的概率个事件同时发生的概率P(AP(A1 1A A2 2A An n)= P(A)= P(A1 1) )P(AP(A2 2) )P(AP(An n) )1.1.若若A A、B B是相互是相互独立独立事件,则有事件,则有P(AP(AB)=

8、 P(A)B)= P(A)P(B)P(B)应用公式的前提:1.事件之间相互独立事件之间相互独立 2.这些事件同时发生这些事件同时发生. 相互独立事件同时发生的概率公式相互独立事件同时发生的概率公式等于每个事件发生的概率的积等于每个事件发生的概率的积. .即即:例例1、某商场推出两次开奖活动,凡购买一定价值、某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都为两次兑奖活动的中奖概率都为0.05,求两次抽奖中

9、,求两次抽奖中以下事件的概率:以下事件的概率:(1)“都抽到中奖号码都抽到中奖号码”;(2)“恰有一次抽到中奖号码恰有一次抽到中奖号码”;(3)“至少有一次抽到中奖号码至少有一次抽到中奖号码”。解解: 记记“第一次抽奖抽到中奖号码第一次抽奖抽到中奖号码”为事件为事件A, “第二次抽奖抽到中奖号码第二次抽奖抽到中奖号码”为事件为事件B,变式变式:“至多有一次抽到中奖号码至多有一次抽到中奖号码”。明确问题:明确问题: 已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.8,0.8,臭皮匠臭皮匠老大解出问题的概率为老大解出问题的概率为0.5,0.5,老二为老二为0.45,0.45,老三老三为为0

10、.4,0.4,且每个人必须独立解题,问三个臭皮匠且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?比较,谁大? 解决问题解决问题略解略解: : 三个臭皮匠中至少有一人解出的概率为三个臭皮匠中至少有一人解出的概率为 0.8()P D所以所以,合三个臭皮匠之力把握就大过,合三个臭皮匠之力把握就大过诸葛亮诸葛亮. .0 0. .8 80 0. .8 83 35 50 0. .6 60 0. .5 55 50 0. .5 51 1) )C CB BA AP P( (1 1互斥事件互斥事件相互独立事件相互独立事件 不可能同时发生

11、的不可能同时发生的两个事件叫做互斥两个事件叫做互斥事件事件.如果事件如果事件A A(或(或B B)是否发生对事)是否发生对事件件B B(或(或A A)发生的概率没有影响,)发生的概率没有影响,这样的两个事件叫做相互独立事这样的两个事件叫做相互独立事件件P(AB)=P(A)+P(B)P(AB)= P(A)P(B) 互斥事件互斥事件A A、B B中中有一个发生,有一个发生,相互独立事件相互独立事件A A、B B同时同时发生发生, ,计算计算公式公式 符符号号概念概念记作记作:AB(:AB(或或A+B)A+B)记作记作:AB已知诸葛亮解出问题的概率为已知诸葛亮解出问题的概率为0.9,0.9,三个臭皮匠解出问题的概率都为三个臭皮匠解出问题的概率都为0.1,0.1,且每个人必须独立解题,问三个臭且每个人必须独立解题,问三个臭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论