代入消元法解二元一次方程组说课稿_第1页
代入消元法解二元一次方程组说课稿_第2页
代入消元法解二元一次方程组说课稿_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上代入法解二元一次方程组 一、教材的地位与作用 代入法解二元一次方程组是选自人教版义务教育课程标准实验教科书数学七年级下册第八章二元一次方程组中的第2节内容,这节课的主要内容是用代入法解二元一次方程组,是在学生学习了一元一次方程后,又一次数学建模思想的教学,培养学生分析问题和解决问题能力的重要内容,也是为今后学生学习三元一次方程组,函数奠定基础。通过实际问题中二元一次方程组的应用,进一步增强学生学习数学、用数学的意识,体会学数学的价值和意义。教学目标 (1)知识与技能目标:掌握用代入法解二元一次方程组的步骤,熟练运用代入法解简单的二元一次方程组。 (2)过程与方法目标:

2、培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形。 (3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过建模解决实际问题,增强学生学数学、用数学的意识。教学重、难点 教学重点:探索如何用代入法将“二元”转化为“一元”的消元过程 教学难点:用代入法解二元一次方程组二、说教法和学法 1、说教法: 为了适应素质教育,培养学生的能力,本节课主要采用引探式教学方法。教师不能将既有的知识灌输给学生,而应从学生熟悉的生活中的问题导入,在活动中教师尽力激发学生求知的欲望,引导他们

3、解决问题,并掌握解决问题的规律和方法。我要关注学生的个体差异,有效的实施有差异的教学。如:多层次对待学生的回答,分层次布置作业。 2、说学法: 本课将引导学生亲身经历知识的发生、发展、形成的认知过程。通过观察、比较、思考、探索、交流、应用等活动,灵活地运用旧知识去研究新问题,在潜移默化中领会学习方法。使学生从“学会”到“会学”,最后到“乐学”。 按照知识发现理论,学习者在一定情况下对学习材料的亲自经验和发现,才是学习者最有价值的东西。在教授知识的同时,必须设法教会学生学习方法,促使学生自立学习。所以,根据本节课的特点,采用自主探究、合作交流的探究式学习方法。三、说教学程序 (一)创设情境,自主

4、学习(5分钟) (二)合作交流,探究新知(15分钟) (三)分享展示,巩固新知(10分钟) (四)点播梳理,知识回顾(5分钟) (五)当堂训练,布置作业(10分钟)(一)创设情境,自主学习篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?(二)合作交流,探究新知 第一步,初步了解代入法 1、在上述问题中,除了用一元一次方程解答,我们还可以设出两个未知数,列出二元一次方程组 设胜的场数是x,负的场数是y, xy10 2xy16 2、自主探究,小组讨论 那么怎样求解二元一次方程组呢?上面的二元一次

5、方程组和一元一次方程有什么关系? 3、学生归纳,教师作补充 上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 第二步,用代入法解方程组 例2用代入法解方程组 xy3 3x8y14 第三步,小组讨论,得出步骤 根据书本上的框图,你们能不能归纳一下用代入法解二元一次方程组的步骤呢?小组讨论一下。 (三)分享展示,巩固新知 新课程理念告诉我们,要关注不同学生在数学上得到不同的发展,关注学生的学习情感。因此为了激发学生的兴趣,巩固所学的知识,我把全班分成6个小组,这样既提高

6、了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。 (四)点播梳理,知识回顾 1、通过这节课的学习活动,你有什么收获? 2、你认为在运用代入法解二元一次方程组时,应注意什么问题?(5) 当堂训练,布置作业 练习是由易到难、由浅到深,以小组比赛的形式呈现出来,这样既提高了学生的积极性,培养了团队精神,也使各类学生的能力都得到不同的发展。 四、说设计理念 本课教学设计体现了新课标所倡导的教学模式:“问题情境建立数学模型解释、应用与拓展”。 我以建构主义理论为指导,在教学过程中,以探究为主线,通过设置带有启发性和思考性的问题,创设问题情景,引导学生思考讨论,让学生亲身体验知识的产生过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。我也将采用多种形式诱导学生及时作出反馈,并利用学生的反馈信息,因势利导,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论