博弈论复习题及答案分析_第1页
博弈论复习题及答案分析_第2页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、囚徒困境说明个人的理性选择不一定是集体的理性选择。(V)子博弈精炼纳什均衡不是一个纳什均衡。(X ) 若一个博弈出现了皆大欢喜的结局,说明该博弈是一个合作的正和博弈。 ( ) 博弈中知道越多的一方越有利。 ( X) 纳什均衡一定是上策均衡。 (X ) 上策均衡一定是纳什均衡。 (V) 在一个博弈中只可能存在一个纳什均衡。 (X) 在一个博弈中博弈方可以有很多个。 (V) 在一个博弈中如果存在多个纳什均衡则不存在上策均衡。 (V ) 在博弈中纳什均衡是博弈双方能获得的最好结果。 (X ) 在博弈中如果某博弈方改变策略后得益增加则另一博弈方得益减少。 (X ) 上策均衡是帕累托最优的均衡。 (X)

2、 因为零和博弈中博弈方之间关系都是竞争性的、 对立的,因此零和博弈就是非合 作博弈。(X)在动态博弈中, 因为后行动的博弈方可以先观察对方行为后再选择行为, 因此总 是有利的。(X)在博弈中存在着先动优势和后动优势, 所以后行动的人不一定总有利, 例如:在 斯塔克伯格模型中,企业就可能具有先动优势。囚徒的困境博弈中两个囚徒之所以会处于困境, 无法得到较理想的结果, 是因为 两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。(X)纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合。(V ) 不存在纯战略纳什均衡和存在惟一的纯战略纳什均衡, 作为原博弈构成的有限次 重复博弈

3、,共同特点是重复博弈本质上不过是原博弈的简单重复, 重复博弈的子 博弈完美纳什均衡就是每次重复采用原博弈的纳什均衡。(V ) 多个纯战略纳什均衡博弈的有限次重复博弈子博弈完美纳什均衡路径:两阶段都 采用原博弈同一个纯战略纳什均衡,或者轮流采用不同纯战略纳什均衡, 或者两 次都采用混合战略纳什均衡,或者混合战略和纯战略轮流采用。(V )如果阶段博弈 G=A1, A2,An; u1, u2,un)具有多重 Nash 均衡,那么可能(但 不必)存在重复博弈 G(T)的子博弈完美均衡结局,其中对于任意的 tT,在 t 阶段 的结局并不是 G 的 Nash 均衡。 (V) (或: 如果阶段博弈 G=A1

4、, A2,An; u1, u2,un)具有多重 Nash 均衡,那么该重复博弈 G(T)的子博弈完美均衡结局,对 于任意的tT,在 t 阶段的结局一定是 G 的 Nash 均衡。) 零和博弈的无限次重复博弈中, 所有阶段都不可能发生合作, 局中人会一直重复 原博弈的混合战略纳什均衡。(V )(或:零和博弈的无限次重复博弈中,可 能发生合作,局中人不一定会一直重复原博弈的混合战略纳什均衡。(X) 原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合, 符合各局中人最 大利益:采用原博弈的纯战略纳什均衡本身是各局中人能实现的最好结果, 符合 所有局中人的利益, 因此,不管是重复有限次还是无限次,

5、 不会和一次性博弈有 区别。(V ) 原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合, 符合各局中人最 大利益,但惟一的纳什均衡不是效率最高的战略组合, 存在潜在合作利益的囚徒 困境博弈。(V )(或:原博弈惟一的纳什均衡本身是帕雷托效率意义上最佳战略组合,符合各局中人最大利益,不存在潜在合作利益的囚徒困境博弈。(X) 根据参与人行动的先后顺序,博弈可以划分为静态博弈 (static game)和动态博 弈(dynamicgame)。如果阶段博弈 G 有唯一的 Nash 均衡, 那么对任意有限次 T,重复博弈 G(T)有唯一的 子博弈完美结局:在每一阶段取 G 勺 Nash 均衡策略。

6、(V )1、无限次重复博弈与有限重复博弈的区别:a.无限次重复博弈没有结束重复的确定时间。在有限次重复博弈中, 存在最后一次重复正是破坏重复博弈中局中人利益和行为的相互 制约关系,使重复博弈无法实现更高效率均衡的关键问题。b.无限次重复博弈不能忽视不同时间得益的价值差异和贴现问题, 必须考虑后一期得益的贴现系数,对局中人和博弈均衡的分析必 须以平均得益或总得益的现值为根据。c.无限次重复博弈与有限次重复博弈的共同点:试图“合作”和惩 罚“不合作”是实现理想均衡的关键,是构造高效率均衡战略的 核心构件。4、根据两人博弈的支付矩阵回答问题:ab2,30,00,04,2找出该博弈的全部纯策略纳什均衡

7、,并判断均衡的结果是否是Pareto 有效 (3)求出该博弈的混合策略纳什均衡。(7 分)(1) 策略甲:A B乙:a b博弈树(草图如下:(2) Pure NE (A, a); (B, b)都是 Pareto 有效,仅(B, b)是 K H有效。Mixed NE (2/5, 3/5); (2/3, 1/3) 5、用反应函数法求出下列博弈的所有纯战略纳什均衡参与人 2(1)写出两人各自的全部策略,并用等价的博弈树来重新表示这个博弈(6 分)纯策略纳什均衡为(B, &)与(A,c)分析过程:设两个参与人的行动分别为 和32,B, 如果 a2= aplayerl 的反应函数尺何)=B,如果

8、32A,如果 32=cC 或者 D,如果 a2=d c,如果 a = A player2 的反应函数 R2(a)工子如果31Bc,如果 3i=CC, 如果 3i= D交点为(B, 3)与(A, c),因此纯策略纳什均衡为(B,3)与(A,c)6( entry deterrenee 市场威慑)考虑下面一个动态博弈:首先,在一个市场 上潜在的进入者选择是否进入,然后市场上的已有企业(在位者)选择是否与新 企业展开竞争。在位者可能有两种类型,温柔型(左图)和残酷型(右图) ,回答下面冋题。在位者默许.(20,30)在位者默许”(10,20)斗争tt 入斗争-进入者:(-10,0)进入者f、(-10,

9、25)不进入(0,100)不进入.(0,100)左图:温柔型右图:残酷型(1)找出给定在位者的两种类型所分别对应的纳什均衡, 以及子博弈精炼纳什均 衡(12 分)(2)已有企业为温柔型的概率至少多少时,新企业才愿意进入(8 分)D解答:2,33,23,40,34,45,20,11,23,14,11,410,23,14,1-1,210,1abcdA参与人B1C(1)温柔 NE (in, accommodate)和(out, fight) 。 SPNE 为(in.accommodate)残酷 NE (out, fight). SPNE 同理20p一10(1 _p)得到pg 1/38、博弈方 1 和

10、博弈方 2 就如何分 10 , 000 元钱进行讨价还价。假设确定了以 下规则:双方同时提出自己要求的数额 A 和 B,0 A, BW 10, 000。如果 A+B 10, 000,则该笔钱就没收。问该博弈的纳什均衡是什么?如果你是其中一个博弈方,你会选择什么数额?为什么?答十、纳什均衡有无数个。最可能的结果是(5000, 5000)这个聚点均衡。9、北方航空公司和新华航空公司分享了从北京到南方冬天度假胜地的市场。如 果它们合作,各获得 500000 元的垄断利润,但不受限制的竞争会使每一方的利 润降至 60000元。如果一方在价格决策方面选择合作而另一方却选择降低价格, 则合作的厂商获利将为

11、零,竞争厂商将获利 900000 元。(1) 将这一市场用囚徒困境的博弈加以表示。(2) 解释为什么均衡结果可能是两家公司都选择竞争性策略。答:(1)用囚徒困境的博弈表示如下表:北方航空公司合作竞争新华航空公司合作500000, 5000000, 900000竞争900000, 060000, 60000(2)如果新华航空公司选择竞争,则北方航空公司也会选择竞争(600000);若新华航空公司选择合作,北方航空公司仍会选择竞争(900000500000。若北 方航空公司选择竞争,新华航空公司也将选择竞争(600000);若北方航空公司 选择合作,新华航空公司仍会选择竞争(9000000)。由于

12、双方总偏好竞争,故 均衡结果为两家公司都选择竞争性策略,每一家公司所获利润均为600000 元。12、 设啤酒市场上有两家厂商, 利润(单位:万元)由下图的得益矩阵给出:厂商 B低价定价(1) 有哪些结果是纳什均衡?(2) 两厂商合作的结果是什么?答(1)(低价,高价),(高价,低价)(2)(低价,高价)各自选择是生产高价啤酒还是低价啤酒, 相应的低价厂商A100i 80050t50一 20, -30900. 60013、A、B 两企业利用广告进行竞争。若 A、B 两企业都做广告,在未来销售中, A 企业可以获得 20 万元利润,B 企业可获得 8 万元利润;若 A 企业做广告,B 企 业不做

13、广告,A 企业可获得 25 万元利润,B 企业可获得 2 万元利润;若 A 企业不 做广告,B 企业做广告,A 企业可获得 10 万元利润,B 企业可获得 12 万元利润; 若 A、B 两企业都不做广告,A 企业可获得 30 万元利润,B 企业可获得 6 万元利 润。(1) 画出 A、B 两企业的支付矩阵。(2) 求纳什均衡。3.答:(1)由题目中所提供的信息,可画出AB 两企业的支付矩阵(如下 表)。B 企业做广告不做广告A 企业做广告20, 825, 2不做广告10, 1230, 6(2)因为这是一个简单的完全信息静态博弈,对于纯策纳什均衡解可运用 划横线法求解。如果 A 厂商做广告,则

14、B 厂商的最优选择是做广告,因为做广告所获得的利 润 8大于不做广告获得的利润 2,故在 8 下面划一横线。如果 A 厂商不做广告, 则 B 厂商的最优选择也是做广告,因为做广告获得的利润为 12,而不做广告的 利润为 6,故在 12下面划一横线。如果 B 厂商做广告,则 A 厂商的最优选择是做广告,因为做广告获得的利润 20大于不做广告所获得的利润 10,故在 20 下面划一横线。如果 B 厂商不做广告, A 厂商的最优选择是不做广告,因为不做广告获得的利润 30 大于做广告所获得 的利润 25,故在 30 下面划一横线。在本题中不存在混合策略的纳什均衡解,因此,最终的纯策略纳什均衡就是A、

15、B 两厂商都做广告。15、求出下面博弈的纳什均衡(含纯策略和混合策略)。乙LR甲U5,00,8D2,6 14,5由划线法易知,该矩阵博弈没有纯策略Nash 均衡可得如下不等式组Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1可得混合策略Nash均衡(抵),(7和16、某产品市场上有两个厂商,各自都可以选择高质量,还是低质量。相应的 利润由如下得益矩阵给出:(1)该博弈是否存在纳什均衡?如果存在的话,哪些结果是纳什均衡?参考答案:由划线法可知,该矩阵博弈有两个纯策略 Nash 均衡,即(低质量,高质量),(高 质量,低质量)。乙企业高质量彳氐质量甲企咼质 量50,501

16、00,800业低质日900,600-20,-30量该矩阵博弈还有一个混合的纳什均衡 因此该问题的混合纳什均衡为囂轨岛自)17、甲、乙两企业分属两个国家,在开发某种新产品方面有如下收益矩阵表示的 博弈关系。试求出该博弈的纳什均衡。如果乙企业所在国政府想保护本国企业利 益,可以米取什么措施?乙企业开发 不开发甲企开发-10,-10100,0业不开0,1000,0发解:用划线法找出问题的纯策略纳什均衡点。7-10-10 100,010,1000,0所以可知该问题有两个纯策略纳什均衡点(开发,不开发)和(不开发,开发)。 该博弈还有一个混合的纳什均衡(10,丄),(10,丄)。11 11 11 11如

17、果乙企业所在国政府对企业开发新产品补贴a 个单位,则收益矩阵变为:;0总0語100o I要使(不开发,开发)成为该博弈的唯一纳什均衡点,只需a10。此时乙企业的收益为 100+a。18、博弈的收益矩阵如下表:乙左右甲上a,bc,d下e,fg,h(1)如果(上,左)是占优策略均衡,则 a、b、c、d、e、f、g、h 之间必然满足哪些关系?(尽量把所有必要的关系式都写出来)Q=a+d-b-c= -970,q=d-b= -120,R= -1380,r= -630可得12x二9763138(2) 如果(上,左)是纳什均衡,则(1)中的关系式哪些必须满足?(3) 如果(上,左)是占优策略均衡,那么它是否

18、必定是纳什均衡?为什么?(4)在什么情况下,纯战略纳什均衡不存在?答:(1)a .e,c g,b d,f h。本题另外一个思考角度是从占优策略 均衡的定义出发。对乙而言,占优策略为(b,f) .(d,h);而对甲而言,占优策略为(a,c) .(e,g)。综合起来可得到所需结论。(2)纳什均衡只需满足:甲选上的策略时,b d,同时乙选左的策略时,a ,e故本题中纳什均衡的条件为:b d,a .e。(3) 占优策略均衡一定是纳什均衡,因为占优策略均衡的条件包含了纳什 均衡的条件。(4) 当对每一方来说,任意一种策略组合都不满足纳什均衡时,纯战略纳 什均衡就不存在。19、 Smith 和 John

19、玩数字匹配游戏, 每个人选择 1、 2、 3, 如果数字相同, John 给 Smith3 美元,如果不同,Smith 给 John 1 美元。(1) 列出收益矩阵。(2) 如果参与者以 1/3 的概率选择每一个数字, 证明该混合策略存在一个 纳什均衡,它为多少?答:(1)此博弈的收益矩阵如下表。该博弈是零和博弈,无纳什均衡。Joh n123Smith13, -3-1 , 1-1 , 12-1 , 1r 3, -3-1 , 13-1 , 1-1, 13, -3(2) Smith 选(1/3,1/3,1/3 )的混合概率时,John 选 1 的效用为:U11 1 1(-3)11 =1333_3J

20、ohn 选 2 的效用为:U21 1 11( -3)1 =1:3333John 选 3 的效用为:U311111(3) =33313类似地,John 选(1/3,1/3,1/3 )的混合概率时,1111Smith 选 1 的效用为:u1二-3 - - (-1)一(-1)=-33331111Smith 选 2 的效用为:U2二-(-1)一3 -(-1)=-3333Smith 选 3 的效用为:U3二-(-1)(-1)3=丄3333因为U1=U2=U3,U1=U2=U3,所以:(-,1,1),(1,1,1)是纳什均衡,策略值分别为 John:u 1; Smith :uJ 3 3 33 3 33,3

21、20、假设双头垄断企业的成本函数分别为:Ci =2血,C2=2Q2,市场需求曲线为P=400_2Q,其中,Q =QiQ2。(1) 求出古诺(Cournot)均衡情况下的产量、价格和利润,求出各自的反 应和等利润曲线,并图示均衡点。(2) 求出斯塔克博格(Stackelberg )均衡情况下的产量、价格和利润,并 以图形表示。(3)说明导致上述两种均衡结果差异的原因。答:(1)对于垄断企业 1 来说:max400-2(Q1Q2)Q1-20Q1这是垄断企业 1 的反应函数其等利润曲线为:二1=380Q1-2Q1Q2-2Q?对垄断企业 2 来说:max400 -2(Q1Q2)Q2-2Q=Q2=50

22、-Q这是垄断企业 2 的反应函数其等利润曲线为:二2=400Q2-2Q1Q2-4Q|在达到均衡时,有:Q 0;企业 2 和企业 3 观察到 qi,然后同时分别 选择 q2和 q3。试解出该博弈的子博弈完美纳什均衡。答:该博弈分为两个阶段,第一阶段企业1 选择产量 qi,第二阶段企业 2 和 3观测到 q1后,他们之间作一完全信息的静态博弈。我们按照逆向递归法对博弈 进行求解。(1)假设企业 1 已选定产量 q1,先进行第二阶段的计算。设企业 2, 3 的利润函 数分别为:二2=(aq1-q2-q3)q2-cq2二3=(a -q1 72-q3)q2-cq3由于两企业均要追求利润最大,故对以上两式

23、分别求一阶条件::2a - q1- 2q2- q3_ c = 0 .:q2此时,討c)2(3)将式(5)代回(3)和(4)有该博弈的子博弈完美纳什均衡:*1* *1q1=2(a_c),q2=q3G(a_c)25、某寡头垄断市场上有两个厂商,总成本均为自身产量的 20 倍,市场需求函 数为Q=200-P。求(1)若两个厂商同时决定产量,产量分别是多少?(2)若两个厂商达成协议垄断市场,共同安排产量,则各自的利润情况如何?答:(1)分别求反应函数,180-2Q1-Q2=0, 180-Q1-2Q2=0, Q 仁 Q2=60(2) 200-2Q=20, Q=9Q Q 仁 Q2=45(1).:q3=a

24、-q1-q2-2q3_c =0求解(1)、(2)组成的方程组有:*a_q_cq2=q33 -(2)现进行第一阶段的博弈分析:对与企业 1,其利润函数为;二1-(a _q1 -q2_q3)q1_cq1将(3)代入可得:=q1(a -q1-c)-3式(4)对 q1求导:解得::二1=a -2q1_c = 0*16 =2(ac)(2)(3)(4)(5)26、一个工人给一个老板干活,工资标准是 100 元。工人可以选择是否偷懒,老 板则选择是否克扣工资。假设工人不偷懒有相当于 50 元的负效用,老板想克扣 工资则总有借口扣掉 60 元工资,工人不偷懒老板有 150 元产出,而工人偷懒 时老板只有 80

25、 元产出,但老板在支付工资之前无法知道实际产出,这些情况双 方都知道。请问:(1)如果老板完全能够看出工人是否偷懒,博弈属于哪种类型?用得益矩阵或 扩展形表示该博弈并作简单分析。(2)如果老板无法看出工人是否偷懒形表示该博弈并作简单分析。(1)完全信息动态博弈。博弈结果应该是工人偷懒,老板克扣。(2)完全信息静态博弈,结果仍然是工人偷懒,老板克扣老板克扣不克扣28、给定两家酿酒企业A B的收益矩阵如下表:A 企白酒啤酒B 企业白酒700, 600900, 1000啤酒800, 900600, 800表中每组数字前面一个表示 B 企业的收益,后一个数字表示 B 企业的收益。(1) 求出该博弈问题

26、的均衡解,是占优策略均衡还是纳什均衡?博弈属于哪种类型?用得益矩阵或扩展工人偷懒不偷懒20, -30900, 600100,80050 505=110)(50, 50)(2) 存在帕累托改进吗?如果存在, 在什么条件下可以实现?福利增量是 多少?(3) 如何改变上述 A、B 企业的收益才能使均衡成为纳什均衡或占优策略均 衡?如何改变上述 A、B 企业的收益才能使该博弈不存在均衡?答:(1)有两个纳什均衡,即(啤酒,白酒)、(白酒,啤酒),都是纳什均 衡而不是占优策略均衡。(2) 显然,(白酒,啤酒)是最佳均衡,此时双方均获得其最大收益。若均 衡解为(啤酒,白酒),则存在帕累托改善的可能。方法是

27、双方沟通,共同做出理性选择,也可由一方向另一方支付报酬。福利由800+900 变为 900+1000,增量为 200。(3) 如将(啤酒,白酒)支付改为(1000, 1100),则(啤酒,白酒)就成 为占优策略均衡。 比如将(啤酒, 白酒)支付改为(800, 500), 将(白酒, 啤 酒)支付改为(900, 500),则该博弈就不存在任何占优策略均衡或纳什均衡。30、 在纳税检查的博弈中, 假设 A 为应纳税款, C 为检查成本, F 是偷税罚款, 且 C 204, 226 16(2)如果双方采用规避风险的策略,均衡的结果是什么?此题应用的思想是最大最小收益法:也就是说, 在对手采取策略时,

28、 所获得的最小收益中的最大值。电视台 1:对方采取前面战略的最小收益为 18对方米取后面战略的最小收益为 16固电视台 1 会选择收益为 18 的战略一一前面 电视台 2:前面的策略是一个优超策略一一前面 策略均衡为(前面,前面)(3)如果电视台 1 先选择,结果有什么?若电视台 2 先选择呢?(18, 18)(23电视台24)(16, 16)电视台2电视台 i 许诺将好节目放在前面的许诺不可信。 因为电视台 2,前面为占优策略,而在电视台 2,选择前面的时候,电视台 1 选择后面的收益要大于前面的收益。 所以,最终结果为(前面,后面)36、如果将如下的囚徒困境博弈重复进行无穷次,惩罚机制为触

29、发策略,贴现因 子为S。试问 S应满足什么条件,才存在子博弈完美纳什均衡?坦 白不坦白坦白4,40,5不坦白5,01,厂参考答案:由划线法求得该博弈的纯策略纳什均衡点为(不坦白,不坦白),均衡结果为(1,1),采用触发策略,局中人 i 的策略组合 s 的最好反应支付Q(s) =maxR(s_u,s)=5,Pi(S*)=4 ,R(s)=1。若存在子博弈完美纳什均衡,必须满Si召. * *足:一i(s*)Pi(sc -,即只有当贴现因子 1/4 时,才存在子博弈完美 朿(s)Pi(sc)514纳什均衡。37、在 Bertrand 价格博弈中,假定有 n 个生产企业,需求函数为 P=a-Q,其中 P

30、 是 市场价格,C 是 n 个生产企业的总供给量。假定博弈重复无穷多次,每次的价格都 立即被观测到,企业使用“触发策略”(一旦某个企业选择垄断价格,则执行“冷 酷策略”)。求使垄断价格可以作为完美均衡结果出现的最低贴现因子 S是多少。 并请解释 S 与 n 的关系。分析:此题可分解为 3 个步骤(1) n 个企业合作,产量总和为垄断产量,价格为垄断价格,然后平分利润。(2)其中一个企业采取欺骗手段降价,那个这家企业就占有的全部市场,获得 垄断利润(3)其他企业触发战略,将价格降到等于边际成本,所有的企业利润为零。 参考答案:(1) 设每个企业的边际成本为 c,固定成本为 0P=a-Q TR=P

31、*Q=(a-Q)*QMR=a-2Q 因为: MR=MC a-2Q=c则:Q=(a-c)/2P=(a+c)/2n =(P-c)*Q=(a-c)2/4每家企业的利润为 (a-c)2/4n(2)假设 A 企业自主降价,虽然只是微小的价格调整,但足以占领整个市场,获得所有的垄断利润 (a-c)2/4(3)其他企业在下一期采取冷酷策略,使得所有企业的利润为0 考虑:A 企业不降价:(a-c)2/4 n , (a-c)2/4 n ,.A 企业降价:(a-c)2/4, 0 ,使垄断价格可以作为完美均衡结果, 就要使得不降价的贴现值大于等于降价的贴 现值。设贴现因子为 SA 不降价的贴现值:(a-c)2/4n

32、1 心-S )A 降价的现值:(a-c)2/4于是:(a-c)2/4n1 心-S ) (a-c)2/4解得:5 1-1/n38、假设某劳动市场为完全竞争市场 ,其供求函数如下 : SL:W=120+2LDL:W=360-L0.5 0.5已知某厂商 (在完全竞争市场下 )的生产函数为 f(L,K)=10L K (K=100) 且其产品的需求与供给函数分别为D:P=60-2q S: P=20+2q试求(a)该厂商的 ACL,MCL及 VMPL各为多少?(b)劳动工资为多少?厂商会雇用多少劳动?由:SL=DL解得:W=280由于产品市场为完全竞争市场,且要素市场也为完全竞争市场 所以,满足:产品市场

33、均衡:P=MR=MC=WL/MP要素市场均衡: W= ACL=MCL=VMPL得到: ACL=MCL=VMPL=280由:D=S 军得:P= 40, q=10厂商追求利润最大化的情况下:0.5W*=VMPL=P*MPL=P*50/L2L*=100/2*PW* =51 (取整数)1.试计算表 1 中的战略式博弈的重复剔除劣战略均衡表 1 一个战略式表述博弈对 B 而言,战略 M 严格劣于 R;(因为 14, 16,08),因此剔除 B 的战略M ;构成新的博弈如下BLRU1,22,4M5,62,6D3,17,8在新的博弈中,对于 A 而言,战略 U 严格劣于 D(因为 13,27),因此剔除 A

34、 的战略 U,构成新的博弈如下:对于新的博弈中,已经没有严格的劣战略,因此没有严格的劣战略可以剔除 所以该博弈不是重复剔除 严格劣战略可解的。但是存在弱劣战略。对于 B 而言,战略 L 弱劣于 R (因为 6=6, 18),因此1,23,12,45,67,12,63,12,07,8UAMDBLMR5,62,63,17,8BLRMD剔除 B 的弱劣战略 L,构成新的博弈如下:MAD在新的博弈中,对于 A 而言,战略 M 严格劣于 D (因为 22),在相应位置划线D(理由自己写),在相应位置划线U(理由自己写),在相应位置划线BRLRR(因为 23),在相应位置划线如果存在混合战略,那么 2 选

35、战略 L 和 R 的期望收益应该应该相等,因此应有UL4(1一 R=uR2(1一 -?自己求解(2 分)同样,1 选战略 U 和 D 的期望收益应该应该相等Uu=23(1 -)=UD=41(1 - )=?得混合均衡:?3.市场里有两个企业 1 和 2。每个企业的成本都为 0。市场的逆需求函数为P=16-Q。其中 P 是市场价格,Q 为市场总产量。(1) 求古诺(Cournot)均衡产量和利润。(2) 求斯坦克尔伯格(Stackelberg 均衡产量和利润。(1)设两个企业的产量分别为q1,q2,有Q二q1 q2,因此利润函数分别为:2二1=(16-q1-q2)q1=16q1-q1-q1q22二2=(16-q1-q2)q2=16qq2-qe利润最大化的一阶条件分别为:16 - 2q- q2 0:二2一=16 -2q2-q1=0 q因此企业 1 和企业 2 的反应函数分别为:16 q216 q12联立,得到q1=q2二?。自己求解(2)设企业 1 先行,企业 2 跟进。两个企业的产量分别为q1,q2,因此利润函数分别为:2二1=(16“1ya22=(16 -q1-q2)q2=16q2-q2-qg2由逆向归纳法,在第二阶段,企业 2 在已知企业 1 的产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论