




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章 差分方程方法在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列,把数列中的前项关联起来所得到的方程。41常系数线性差分方程 常系数线性齐次
2、差分方程 常系数线性齐次差分方程的一般形式为 (4.1) 其中为差分方程的阶数,为差分方程的系数,且。对应的代数方程 (4.2)称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根设差分方程(4.1)有个单特征根 ,则差分方程(4.1)的通解为,其中为任意常数,且当给定初始条件 (4.3)时,可以惟一确定一个特解。2. 特征根为重根设差分方程(4.1)有个相异的特征根,重数分别为且 则差分方程(4.1)的通解为同样的,由给定的初始条
3、件(4.3)可以唯一确定一个特解。3. 特征根为复根设差分方程(4.1)的特征根为一对共轭复根和相异的个单根,则差分方程的通解为,其中, .同样由给定的初始条件(4.3)可以惟一确定一个特解。 另外,对于有多个共轭复根和相异实根,或共轭复根和重根的情况,都可以类似地给出差分方程解的形式。412 常系数线性非齐次差分方程 常系数线性非齐次差分方程的一般形式为 (4.4)其中为差分方程的阶数,为差分方程的系数,,为已知函数。在差分方程(4.4)中,令, 所得方程 (4.5)称为非齐次差分方程(4.4)对应的齐次差分方程,即与差分方程(4.1)的形式相同。求解非齐次差分方程通解的一般方法为首先求对应
4、的齐次差分方程(4.5)的通解 ,然后求非齐次差分方程(4.4)的一个特解,则为非齐次差分方程(4.4)的通解。关于求的方法同求差分方程(4.1)的方法相同。对于求非齐次方程(4.4)的特解的方法,可以用观察法确定,也可以根据的特性用待定系数法确定,具体方法可参照常系数线性非齐次微分方程求特解的方法。 4.2 差分方程的平衡点及其稳定性 一般来说,差分方程的求解是困难,实际中往往不需要求出差分方程的一般解,而只需要研究它的平衡点及其稳定性即可。 一阶线性常系数差分方程一阶线性常系数差分方程的一般形式为其中为常数,它的平衡点由代数方程求解得到,不妨记为. 如果,则称平衡点是稳定的,否则是不稳定的
5、。为了便于研究平衡点的稳定性问题,一般将其转化为求方程的平衡点的稳定性问题。事实上,由可以解得,于是是稳定的平衡点的充要条件是:. 一阶线性常系数差分方程组 一阶线性常系数齐次差分方程组的一般形式为其中为维向量,为阶常数矩阵。它的平衡点是稳定的充要条件是的所有特征根都有 。对于一阶线性常系数非齐次差分方程组 的情况同样给出。 二阶线性常系数差分方程二阶线性常系数齐次差分方程的一般形式为其中为常数,其平衡点是稳定的充要条件是特征方程,的根满足。对于一般的的平衡点的稳定性问题同样给出。类似地,也可直接推广到阶线性差分方程的情况。 一阶非线性差分方程一阶非线性方程的一般形式为 其中为已知函数,其平衡
6、点定义为方程的解。 事实上,将在处作一阶的泰勒展开有,则也是一阶线性差分方程的平衡点,故此,平稳衡点稳定的充要条件是。4.3连续模型的差分方法4.3.1 微分的差分方程已知在点处的函数值,且,试求函数的导数值。根据导数的定义,用差商代替微商,则有下面的差分公式。向前差: 向后差: 中心差: 4.3.2 定积分的差分方法已知函数在点处的函数值,且在上可积,试求函数在上的积分值。根据定积分的定义,则有一般的求积公式其中为求积系数,它与的选取方法有关。取不同的求积系数,可以得不同的求积公式。对于等距节点 ,其中步长为很小的数,则有如下的求积公式。1) 复化矩形公式;2) 复化梯形矩阵; 3) 复化辛
7、普森(Simpson)公式;其中为子区间的中点。4) 复化柯特斯(Cotes)公式;其中为子空间中的四等分点。4.3.3 常微分方程的差分方法1. 一阶常微分方程的差分方法设一阶常微分方程的定解问题为 (4.6)其中函数关于满足李普希兹条件,即保证问题解(4.6)的存在唯一性。现在的问题是求方程在一系列节点处的近似数值解不妨假设步长为 为常数。在此,我们根据微分的差分方法,即用差商来近似代替微商,再利用“步进式”方法,可以给出求解问题(4.6)的差分方法。1) 单步欧拉(Euler)公式用差商近似代替中的导数,则可以得差分公式 其精度为阶的。2)两步欧拉公式用差商 近似代替 中的导数,则可得差
8、分公式 两步法需要用到前两步的方信息,一般不能自行起步,需先用单步方法求出 ,其精度是阶的。3)梯形公式对于方程的两边在上求积分得利用积分的差分方法中梯形公式求解积分则离散化即可得到微分方程的梯形差分公式这是一个影式格式,计算量大,一般不单独使用。其镜的也是阶的。4) 改进的欧拉公式 由于单步欧拉公式色精度低,但计算量小;矩形公式精度高,但是计算量大,为此,我们综合运用这两种方法就得到改进的欧拉公式,其精度为阶的。预报: 校正: 或写成平均化形式;5)龙格库塔(Runge-Kutta)法龙格库塔方法的基本思想:对于微分方程的定解问题(4.6),考虑差商,根据阿格朗日微分中值定理可得记 ,称为
9、上的平均变化率,则 。现在的问题只要找到寻找一种计算的方法。如果取,则就是欧拉公式。如果取,则相应的就是改进的欧拉公式。现在,我们取个点,用在这个点的函数值的加权平均作为的近似值,即其中为权系数。则有 (4.7)其中 ,为待定系数。实际上,适当选择,使得公式有更高的精度,这就是龙格-库塔方法的思想。二阶龙格-库塔公式:在内取中点,则可取,代人(4.7)式得到二阶龙格-库塔公式,其精度为阶。 三阶龙格-库塔公式:在内任取二点,类似的方法可得到三阶的龙格-库塔公式其精度是阶的常用的是三阶的情况。四阶龙格-库塔公式:类似的方法可以得到四阶龙格-库塔公式,其精度是阶的2. 一阶常微方程组的差分方法将前
10、面的单个方程中的变量和函数视为向量,相应的差分方法即可用于由多个方程组的一阶方程组的情形。对于二个方程的方程组 (4.8)设以 表示函数在节点 上的近似解,则有改进的欧拉公式:预报:校正:四阶龙格-库塔公式其中 其他的公式也都可以类似得到,即相当于同时求解多个一阶方程,从方法上没有本质的差别。 3. 高阶常微分方程的差分方法对于某些高阶方法的定解问题,原则上可以转化为一阶方程组来求解。臂如,对于如下的二阶微分方程的定解问题若令,则可化为一阶方程组的定解问题 (4.9) 实际上,(4.9)式可以视为(4.8)式的特例,类似地可以得到相应的求解差分公式。4.4 最优捕鱼问题4.4.1 问题的提出假
11、设鯷鱼可分为4个年龄组:称1、2、3、4龄鱼。各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(g);各年龄组鱼的自然死亡率均为0.8(1/年);这种鱼为季节性集中产卵繁殖,产卵孵化期为每年的最后4个月,平均每条4龄鱼的产卵量为(个),3龄鱼的产卵量为这个数的一半,2龄和1龄鱼不产卵。卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵量之比)为。渔业部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业。如果每年投入的捕捞能力固定不变,即固定努力量捕捞,这时单位时间捕捞量将与各年龄组鱼群条数成正比,比例系数称为捕捞强度系数。通常使用13mm网眼的拉网,这种网只能捕捞3、
12、4龄鱼,其两个捕捞系数之比为0.42:1.要解决的问题是:建立数学模型,分析如何实现可持续性捕捞(即每年开始捕捞时渔场中各年龄组鱼群条数不变),并且在此前提下得到最高的年收获量(总质量)。4.4.2 模型的假设与符号说明1. 模型的假设(1) 只考虑鱼的繁殖和捕捞的变化,不考虑鱼群迁入与迁出;(2) 各龄鱼在一年的任何时间都会发生自然死亡;(3) 所有鱼都在每年最后四个月内(后1/3年)完成产卵孵化的过程,成活的幼鱼在下一年初成为1龄鱼;(4) 产卵发生于后四个月之初,产卵鱼的自然死亡发生与产卵之后;(5) 相邻两个年龄组的鱼群在相邻两年之间变化是连续的,即第k年底龄鱼的条数等于第年初龄鱼的条
13、数;(6) 4龄以上的鱼全部死亡;(7) 采用固定努力量捕捞意味着捕捞的速率正比于捕捞时各龄鱼群的条数,比例系数为捕捞强度系数。2. 符号的说明用表示t 时刻(年)龄鱼的条数; 表示鱼的平均自然死亡率,即;表示龄鱼的产卵数,即;表示龄鱼群的捕捞强度系数,即;表示龄鱼群的捕捞强度系数,即,为捕捞努力量;表示产卵开始的月份;表示龄鱼的捕捞量;表示龄鱼的捕捞率,即。443 模型的建立与求解1 无捕捞时鱼群的自然增长模型由假设(1)和(2)得, 又由假设(3)和(4)得由假设(5)和(6)得2. 固定努力量捕捞鱼群的增长和捕捞模型由假设知,捕捞期为k<=t<=K+ 则有, (4.10) (
14、4.11) (4.12) (4.13) (4.14) (1) 鱼群的增长规律求解方程(4.10)和(4.11),并利用连续条件(4.12)式可得 其中: (2) 捕捞量单位时间第 龄鱼的捕捞量(条数)为 第k年全年(8个月)第龄鱼的捕捞量(条数)为于是,第k 年总捕捞量(质量)为(3)可持续性捕捞模型可持续捕捞,即意味着由于自然死亡和捕捞使鱼群减少,而通过产卵繁殖补充,使得鱼群能够在每年初开始捕捞时保持平衡不变,这样的捕捞策略就可以年复一年地一直持续下去。因此,可持续捕捞的鱼群数应是(4.15)、(4.16)、(4.17)式的平衡解,即模型不依赖于时间的解。求解(4.15)、(4.16)、(4
15、.17)得即 将(4.18)式代入(4.20)式得 代入(4.19)式有求解可得代入(4.18)式得到 其中.当时, 即意味着捕捞过度,致使鱼群灭绝。当B(E)=1时, 称之为过度捕捞努力量,因此,可以在的范围内寻找最优捕捞策略。在可持续性捕捞的条件下,第龄鱼的年捕捞量(条数)为,整个鱼群的年捕捞量(重量)为 即得到了年捕捞与努力量 的关系,由计算机求解可得在可持续性捕捞的前提下有最大捕捞量为 ,最大年捕捞量为万吨。各龄鱼的数量为(条),(条),(条) (条)。各龄鱼的捕捞率为 即 。 模型的结果分析(1)如果没有假设(6),或改为4龄以上的鱼仍算4龄鱼,则(4.2)式改为 ,其讨论相同,但要复杂一些;(2)假设(4)关于产卵时间的分布问题,题中未给出这方面的信息,完全是为了简化,入股假设产卵是在后4个月内均匀分布,则问题会复杂些,而且不大符合实际。 4.5 参考案例与参考文献1. 参考案例 (1)人口的预测与控制问题文献【1】:290-295 (2)最优捕鱼问题文献【3】:106-108 (3)人口增长问题文献【4】:28-36 (4)动物种群的管理问题文献【4】:36-402. 参考文献 【1】 姜启源.数学模型.第二版.北京:高等教育出版社,1993 【2】 叶其孝.大学生数学建模竞赛辅导教材(二).长沙:湖南教育
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工程项目管理更改流程试题及答案
- 冷链物流温控技术在食品安全法规执行中的应用研究报告
- 施工现场的职业健康安全试题及答案
- 2025年行政管理案例分析试题及答案
- 2025年市政工程深化复习试题及答案
- 2025年工程经济核心概念试题及答案
- 建筑工程考试中的实践经验分享试题及答案
- 2025年金融市场动态试题及答案
- 2025年工程项目管理专家意见试题及答案
- 2024年水利水电工程设计与实施案例及试题及答案
- 中国竹笛演奏知到课后答案智慧树章节测试答案2025年春四川音乐学院
- 农贸市场改造可行性报告
- 古诗词诵读《鹊桥仙(纤云弄巧)》课件(共37张) 2024-2025学年统编版高中语文必修上册
- (高清版)DBJ33∕T 1286-2022 住宅工程质量常见问题控制标准
- 土地租赁合同详细版样板6篇
- SiPM读出芯片设计:原理、案例与技术突破
- 高中家长会 高二下学期期中家长会课件
- 2025年安徽合肥东部新中心建设投资限公司招聘8人高频重点模拟试卷提升(共500题附带答案详解)
- 长方体礼盒的制作(说课稿)-2023-2024学年五年级下册数学人教版
- 2025年新西师大版数学一年级下册课件 综合与实践 欢乐购物街 活动1 认识人民币
- 健康主题班会 《如何正确与异性同学相处》班会课件
评论
0/150
提交评论