


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(3)(x 2y)12(-2x-2y)12.3乘法公式一、基础训练1 下列运算中,正确的是()A .(a+3)( a 3) =a2 3B.( 3b+2)( 3b 2) =3b2 4C . (3m 2n) ( 2n 3m) =4n2 9ni D . (x+2)( x 3) =x2 62. 在下列多项式的乘法中,可以用平方差公式计算的是()11A .(x+1)( 1+x) B .(-a+b)( b -a)2222C . ( a+b)(a b) D . (x y) (x+y )3. 对于任意的正整数 n,能整除代数式(3n+1)( 3n 1) ( 3 n)(3+n) 的整数是()A . 3 B .
2、6 C . 10 D . 9224 .若(x 5) =x +kx+25,贝U k=()A . 5 B . 5 C . 10 D . 105 . 9.8 X10.2=;6 . a2+b2= (a+b) 2+= (a b) 2+.7. (x y+z)( x+y+z) =;28 .( a+b+c) =. ( 1 x+3) 2( lx 3) 2=.2 22 210 . (1)( 2a 3b)( 2a+3b);(2)( p+q) ( p q);11 .(1)( 2a b)( 2a+b)( 4a2+b2);(2)(x+y z)(x y+z) ( x+y+z)(x y z)12有一块边长为m的正方形空地,想
3、在中间位置修一条 十”字型小路,小路的 宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法, 验证了什么公式?二、能力训练13如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A . 4 B . 2 C 2 D . ±1 2 114. 已知a+ =3,贝U a+ 2,则a+的值是()aaA. 1B. 7C. 9D. 1115 .若 a b=2, a c=1,贝U( 2a b c) 2+ (c a) 2 的值为()A. 10B. 9C. 2D. 116 . |5x 2y | -2y 5x | 的结果是()2 2 2 2A. 25x 4yB . 25x 20
4、xy+4yC. 25x2+20xy+4y2 D . 25x2+20xy 4y217 .若 a2+2a=1,则(a+1) 2=.三、综合训练 2 218 .(1)已知 a+b=3, ab=2,求 a+b ;(2)若已知 a+b=10, a2+b2=4,ab 的值呢?19 .解不等式(3x 4) 2> ( 4+3x)( 3x+4)20.观察下列各式的规律.写出第2007行的式子;1 写出第n行的式子,并说明你的结论是正确的.+ (1>2) 2+F= (1X2+1) 2;2 2+ (2X3) 2+32= (2X3+1) 2;3 2+ (3X4) 2+42= (3X4+1) 2;参考答案1
5、. C点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当出现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,而应是多项式乘多项式.2. B点拨:(a+b)( b a) = (b+a)( b a) =b 2 1 2 =4x +2xy+ y . a2.3. C点拨:利用平方差公式化简得10 (n 1),故能被10整除.4. D点拨:2 2 2(x-5) =x - 2xX5+25=x 10x+25.5. 99.96 点拨:9.8 X10.2= (10-0.2 ) (10+0.2 ) =10- 0.2=100- 0.04=99.96 .6. ( 2ab); 2a
6、b7. x2+z2-y2+2xz点拨:把(x+z)作为整体,先利用平方差公式,然后运用完全平方公式.2 2 28. a +b +c +2ab+2ac+2bc点拨:把三项中的某两项看做一个整体,运用完全平方公式展开.运用平方差公式(牛+3)119.6x点拨:把(-x+3)和(丄x-3)分别看做两个整体,222 1 2 1 1 1 1=x 6=6x.2-( x 3) 2= (1 x+3+- x - 3) -x+3-( -x - 3)2 2 2 2 210. ( 1) 4a? 9b ; (2)原式=(p) 2q=pq.a,b.点拨:在运用平方差公式时,要注意找准公式中的(3) x1 21221 2解
7、法二:(2x- y) = (2x+ y) =4x+2xy+y .2 24点拨:运用完全平方公式时,要注意中间项的符号.11. ( 1)原式=(4a2- b2)(4a2+b2) = (4a2) 2-( b2) 2=16a4- b4.点拨:当出现三个或三个以上多项式相乘时, 根据多项式的结构特征,先进 行恰当的组合.(2)原式=x+ (y-z) x -(y-z) - x+ (y+z) x -(y+z) =x 2-( y- z) 2- x2-( y+z) 22 / 、2 2 / 、2=x -(y - z) - x+ (y+z) 4xy+4y2;1 1(2y) +( 2y)1解法 一:(一2x-1y)
8、 2=(-2x) 2+2(2x)(y+z) 2-( y-z) 2(y+z+y z) y+z (y-z)=2y 2z=4yz.点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.12. 解法一:如图(1),剩余部分面积=mi mr mn+n=ni 2mn+$.解法二:如图(2),剩余部分面积=(n n) 2.'( n n) 2=m 2mn+此即完全平方公式.点拨:解法一:是用边长为m的正方形面积减去两条小路的面积, 注意两条 小路有一个重合的边长为n的正方形.解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为
9、(m-n)的正方形面积.做此类题要注意数形结合.:.:;liiiiiiiiiiW! :. . . :。*岫唸!G團!:!:»»! :!:i. :-!'!:' i:-in2 2 2 2 2 _13. D 点拨:x+4x+k= (x+2) =x +4x+4,所以 k =4, k 取±.14. B 点拨:a2+4= (a+- ) 2-2=32-2=7.aa222215. A 点拨:(2a b c) + (c a) = (a+a b c) + (c a) = (a b) +(a c) 2+ (c a) 2= (2+1) 2+ ( 1) 2=9+1=10.1
10、6. B 点拨:(5x 2丫)与(2y 5x)互为相反数;|5x 2y ) 2y 5x | =(5x 2y) 2=25x2 20xy+4y2.17. 2点拨:(a+1) 2=a2+2a+1,然后把a2+2a=1整体代入上式.2 2 218. ( 1) a+b= (a+b) 2ab.T a+b=3, ab=2,2 2 2a+b =3 2>2=5.(2)v a+b=10,2 2 ( a+b) =10,a 2+2ab+6=100,. 2ab=100( a2+b2) 又 T a2+b2=4, 2ab=100- 4,ab=48点拨:上述两个小题都是利用完全平方公式(a+b) 2=a2+2ab+6中
11、(a+b)、 ab、(a2+b2)三者之间的关系,只要已知其中两者利用整体代入的方法可求出第 三者.219.( 3x 4) > ( 4+3x)( 3x+4),(3x) 2+2X3x ( 4) + ( 4) 2> (3x) 2 42,9x2 24x+16>9f 16,24x> 32.x<点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.2 220.( 1)( 2007) + (2007X2008) + (2008)2=(2007X2008+1)(2) n2+n (n+1) 2+ (n+1) 2=n (n+1)+1证明:T n2+n (n+1) 2+ (n+1) =n 2+n2 (n+1) 2+n2+2 n+12 2 2 2=n +n (n+2n+1) +n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店大堂装修风格与服务质量提升
- 跨界融合现代科技在工艺美学中的应用
- 营销自动化与数据驱动的精准投放
- 营销团队的目标设定与绩效评估
- 职场技能与孩子学习的融合
- 职场技能提升课程-从简单机械开始构建知识体系
- 色彩心理学在教育中的应用提升学习效果
- 运动损伤处理流程从预防到治疗
- 零售业中的实时库存控制策略研究
- 设备故障预警与智能维护IIoT技术的力量
- 电大计算机网络技术专业 综合实训报告
- EH系统使用说明书
- 2022毛概学习行为表现
- 科学六年级上教科版45相貌各异的我们
- 宾馆行业信用评价规范
- 2023北京朝阳区初三二模英语试卷及答案
- 2023年05月2023年湖南邵阳市新宁县招考聘用90名教师笔试历年高频考点试卷含答案解析
- 装饰公司员工手册
- 盆腔器官脱垂的诊治指南
- 良恶性肿瘤良性肿瘤的介入治疗
- 2023年安徽省中考生物总复习二轮专题:科学探究创新题(有答案)
评论
0/150
提交评论