第八册数学概念_第1页
第八册数学概念_第2页
第八册数学概念_第3页
第八册数学概念_第4页
第八册数学概念_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、国标版小学数学四年级下册复习资料(概念部分)姓名: 第一单元乘法1、三位数乘两位数,所得的积不是四位数就是五位数。2、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。3、末尾有0的乘法计算方法:先把两个乘数不是零的部分相乘(末尾的“0”画竖虚线隔开),再看两个乘数末尾一共有几个零,就在积的末尾加几个零。第二单元升和毫升1、1升(L)=1000毫升(ml 、mL)2、从里面量长、宽、高都是1分米的正方体容器正好是1升。1升水重1千克。生活中一杯水大约250毫升;一个高压

2、锅大约盛水6升;一个家用水池大约盛水30升,一个脸盆大约盛水10升;一个浴缸大约盛水400升;一个热水瓶的容量大约是2升,一个金鱼缸大约有水30升,一瓶饮料大约是400毫升,一锅水有5升,一汤勺水有10毫升。3、一个健康的成年人血液总量约为4000-5000毫升。义务献血者每次献血量一般为200毫升。4、1毫升大约等于20滴水。第三单元三角形1、围成三角形的条件:较短两条边长度的和一定大于第三条边。2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。3、三角形具有稳定性(也就是当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变),生活中很多物体利用了这样的

3、特性。如:人字梁、斜拉桥、自行车车架。4、三个角都是锐角的三角形是锐角三角形。(两个内角的和大于第三个内角。)5、有一个角是直角的三角形是直角三角形。(两个内角的和等于第三个内角。两个锐角的和是90度。两条直角边互为底和高。)6、有一个角是钝角的三角形是钝角三角形。(两个内角的和小于第三个内角。)7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。(锐角三角形的三条高都在三角形内;直角三角形有两条高落在两条直角边上;钝角三角形有两条高在三角形外)。8、把一个三角形分成两个直角三角形就是画它的高。第1页顶角底角底角腰腰底9、两条边相等的三角形是等腰三角形,相等的两条边叫做腰

4、,另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等,是轴对称图形,有一条对称轴(跟底边高正好重合。)三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)10、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。10、求三角形的一个角=180°另外两角的和11、等腰三角形的顶角=180°底角×2=180°底角底角12、等腰三角形的底角=(180°顶角)÷213、一个三

5、角形最大的角是60度,这个三角形一定是等边三角形。14、多边形的内角和=180°×(n2)n为边数第四单元混合运算1、混合运算中:先乘除后加减,既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。第五单元平行四边形和梯形1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。2、用两块完全一样的三角尺可以拼成一个平行四边形。3、平行四边形容易变形(不稳定性)。生活中许多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、伸降机)把平行四边形拉成一个长方形,周长不变,面积变了

6、。平行四边形不是轴对称图形。4、只有一组对边平行的四边形叫梯形。平行的一组对边分别叫做梯形的上底和下底,不平行的一组对边叫做梯形的腰,两条平行线之间的距离叫做梯形的高(无数条)。5、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。6、两个完全一样的梯形可以拼成一个平行四边形。7、正方形、长方形属于特殊的平行四边形。8、平行四边形和梯形的内角和都是3600,计算公式是(4-2)×1800=3600 9、平行四边形和梯形两平行线间的两个角叫同旁内角,两个同旁内角的和是180010、平行四边形周长=(长边+短边)×2(和长方形周

7、长公式是一样的)11、等腰梯形周长=上底+下底+腰×2,腰长=等腰梯形周长-(上底+下底)÷2第2页第六单元找规律1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)2、排列:(1)爸爸、妈妈、我排列照相,有几种排法:2×3。即n×(n1)××1 特例:数字有“0”的排列就要先排出某个数字在首位的个数,再乘以能排在首位数字的个数。举例:用2、0、8这三个数字组成的三位数一共有多少个?因为“0”是不能排在首位的,因此,能排在首位的数字只有2和8这2个数。先排“2”在首位的三位数的个数:208、280,有2个,同样“8”在首位的三位

8、数的个数也有2个:802、820,因此一共有2×2个。依此类推。(2)两(队)人之间只算一次的项目如打电话、握手、乒乓球单打、下棋、羽毛球单打、网球单打等,即(n1)(n2)1或n×(n1)÷2举例:5个球队踢球,每两队踢一场,要踢多少场:4+3+2+1或5×4÷2第七单元运算律1、乘法交换律:a×b=b×a2、乘法结合律:(a×b)×c=a×(b×c)3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)4、衍生:(a-b)×c=

9、a×c-b×c5、简便运算典型例题:102×35=(100+2)×35 35×98=35×(100-2)=35×100-35×236×101-3636×101-36×136×(101-1)=36×100 36×99+36=36×99+36×1=36×(99+1)=36×100第八单元对称、平移和旋转对称:轴对称图形:对折后完全重合的图形,(注意:不是相等的图形,有时相等但不一定完全重合,比如平行四边形对折后两个图形是

10、相等或一样的,但就是不能完全重合)折痕就是对称轴,用虚线表示对折的一般方法:上下对折、左右对折、斜着对折。1、在小学阶段主要涉及的对称图形有:(1)只有1条对称轴的图形:等腰图形。等腰三角形、直角等腰三角形、等腰梯形。(2)有2条对称轴的图形:长方形、菱形。(3)有3条对称轴的图形:正三边形(等边三角形)(4)有4条对称轴的图形:正四边形(正方形)(5)有无数条对称轴的图形:圆(6)正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,正n边形有n条对称轴。2、画对称轴的方法:(1)判断图形是否是轴对称图形;(2)量图形边的长度,确定边的中点;(3)在中点处

11、点上点;(4)连点(奇数边形的一般是顶点和对边中点相连,如等边三角形、正五边形、正七边形等;偶数边形的是对边中点和中点相连,还有对着的顶点和顶点相连,如正方形、正六边形,长方形是对边中点相连)3、画图形的另一半的方法:(1)找对称轴确定画哪一半位置;(2)找关键点(3)量(数)出每个关键点到对称轴的长度或多少格;(4)连成图形。平移:1、平移方向:向上、向下、向左、向右2、图形的平移方法:(1)点出关键点;(2)画平移方向,用“”表示;(3)再把关键的点平移到指定的地方,正确数出移动多少格(本学期学习两次平移,如从左上平移到右下,先向右平移,再向下平移。)(4)最后连接成图。(注意:(1)两次

12、移动最好都画出图形,第一次移动用虚线标出,第二次用实线画出,这样就不容易错,其中移动几格是关键,数错了也就画错了;(2)在平移过程中,基本图形不能改变。)旋转:图形旋转方法:(1)找旋转点;(2)确定关键的边;(3)把关键的边按指定的旋转方向和角度旋转到指定的地方,(本学期旋转方向只有两种:顺时针和逆时针;旋转角度是900)再连线。(注意:不管是平移还是旋转,基本图形不能改变。)第九单元倍数和因数1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)2、

13、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。如18的因数有:1、2、3、6、9、18。3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。如:18的倍数有:18、36、54、72、90(省略号非常重要)4、一个数最大的因数等于这个数最小的倍数(都是它本身)。5、写一个数的倍数的方法:从本身写起,按“本身×1、本身×2”往下写。如果是没有限制条件的,一般写5个,后面就写省略号。如:18的倍数有:18、36、54、72、90(省略号非常重要)。如果有条件限制的,就必须写完,最后用“。”结束。如:60以内18的倍数有:18、36、54。

14、6、写一个数的因数的方法:两个两个的写,而且是一头一尾往中间写。如:24的因数有:第一步:因为1×24=24,所以头写“1”和“顿号、”,中间空一些地方出来,在尾写24。(1、 24)第二步:从“2”想:2×( )=24,2×12=24,所以,在1后面写“2、”,在24前面写“12、”。就变成:24的因数有(1、2、 12、24)第三步:从2后面的数“3”想:3×( )=24,3×8=24,所以,在2后面写“3、”,在12前面写“8、”就变成:24的因数有:(1、2、3、 8、12、24)第四步:接着考虑3后面的“4”,4×( )=2

15、4,4×6=24,所以,24的因数有:(1、2、3、4、 6、8、12)第五步:接着考虑4后面的“5”,5×( )=24,没有。所以,24的因数有:(1、2、3、4、 6、8、12)第六步、继续考虑5后面的“6”,可是“4×6=24”已经写过了,也就是说,从“一头一尾向中间”已经写完了,表明:24的因数就是这么多了。因此,24的因数有:(1、2、3、4、 6、8、12)具体变化是:24的因数有:(1、 24)24的因数有:(1、2 12、24)24的因数有:(1、2、3 8、12、24)24的因数有:(1、2、3、4、6、8、12、24)如果出现两个数是一样的,比

16、如4×4=16的怎么写?两个“4”的只能写一个“4”举例:16的因数有:1、2、 4 、8、16。具体过程是:16的因数有:1、 1616的因数有:1、2、 8、1616的因数有:1、2、 4、 8、167、有些特殊数字的因数很少,要注意。1的因数只有“1”2的因数有:1、23、因数有:1、35的因数有:1、59、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)10、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)11、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。12、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40)

17、13、一个数各位上数字的和是3的倍数,这个数就是3的倍数。(如:453各位上数字的和是4+3+5=12,因为12是3的倍数,所以453也是3的倍数。)14、一个数只有1和它本身两个因数的数叫素数。(或质数)如:2、3、5、7、11、13、17、19 2是素数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)第3页15、一个数除了1和它本身两个因数外,还有其它因数的数叫合数。如:4、6、8、9、1016、1既不是素数也不是合数,因为1的因数只有1个:117、哥德巴赫猜想:任何大于2的偶数都是两个素数之和。20=3+17、40=11+2、8=35、10=37、12=57、14=311=

18、77、30=237=131718、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。19、三个连续自然数(3、4、5),三个连续奇数(3、5、7),三个连续偶数(4、6、8)的和都是3的倍数。第十单元用计算器探索规律1、积的变化规律:积不变规律:一个因数乘几,另一个因数同时除以几(0除外),积不变。另一种说法:一个因数扩大几倍,另一个因数缩小相同的倍数(0除外),积不变。积变化规律:一个因数不变,另一个因数乘几或除以几(0除外),得到的积等于原来的积乘或除以几。另一种说法:一个因数不

19、变,另一个因数扩大或缩小几倍,积也随着扩大缩小或几倍。2、商的变化规律:商不变规律:被除数和除数同时乘或除以相同的倍数,(0除外),商不变。(余数会变)另一种说法:被除数和除数同时扩大或缩小相同的倍数,(0除外),商不变。(余数会变)商变化规律1:被除数乘(或除以)几,除数不变,商也随之乘(或除以)几。另一种说法:被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。商变化规律2:被除数不变,除数除以几(0除外),商反而乘几。另一种说法:被除数不变,除数缩小几倍(0除外),商反而扩大几倍。商变化规律3:被除数不变,除数乘几,商反而除几。另一种说法:被除数不变,除数扩大几倍,商反而缩小

20、几倍。第十一单元解决问题策略1、用“画图”解决问题步骤如下:(1)先画一个长方形或正方形草图;(2)根据题目的条件在长方形或正方形上画图(3)根据画出的图来求长方形的长或宽,然后再求面积。“回”字型图要注意:如果里面正方形的边长知道,外面正方形的边长=里面正方形的边长+1+1;相反则里面正方形的边长=外面正方形的边长-1-1。2、行程问题(1)相遇问题速度和×相遇时间=两地相距路程 两地相距路程÷速度和=相遇时间(2)相背问题速度和×行走时间=两地相距路程 两地相距路程÷速度和=行走时间(3)同向问题速度差×行走时间=相差路程 相差路程

21、7;速度差=行走时间第十二单元统计1、折线统计图不仅能够看出数量的多少,而且能够更清楚地看出数量的增减变化情况。折线统计图的制作步骤:定点 写数据 连线 写日期 2、条形统计图能够看出数量的多少,可进行比较大小多少。3、判断到底是画折线统计图还是画条形统计图可从以下两个方面考虑:(1)如果是观察某个物体连贯波动变化的,就画折线统计图;如果是观察不同物体数量大小的画条形统计图。(2)观察横轴下面项目,如果项目在竖起直线下面的,就画折线统计图;如果项目在方格下面的,就画条形统计图。第十三单元用字母表示数1、用字母表示数的基本规律:只有字母和数字或字母和字母相乘时要把乘号“×”省略,其他相

22、加、减、除都不能省略运算符号。(1)字母与字母相乘时,省略乘号,直接写字母,如a×b=ab;如果是两个相同字母相乘,则要写成“平方”形式,如x×x=x2(2)字母和数字相乘,省略乘号,数字必须写在字母的前面,如d×5=5d如果正方形的边长用a表示,周长用C表示,面积用S表示。那么:正方形的周长:C=a×4=4a 正方形的面积:S=a×a= a2。a×4或4×a通常可以写成4·a或4a;a×a可以写成a·a,也可以写成a2,读作“a的平方”。如果是a与1相乘,就可以直接写成a。(3)如果是数字或字母和算式相乘,也要省略乘号,数字写在算式的前面,如(4+a) ×5=5(4+a), (4+a)×b=(4+a)b(4)比较复杂的算式仍然要根据数字写在字母的前面来简写,如10×m+3×n=10m+3n2、应用题要注意书写格式:(1)先写出用字母表示的简写算式(2)计算时要先写简写算式,然后用数字代替字母,在这过程中,要还原乘号(3)不写单位(4)写答语举例1:学校买了8个足球和10个排球,足球单价是每个m元,排球单价是每个n元。用式子表示学校一共应付多少元。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论