




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数理统计 课程论文 题目:运用spss软件对我国人均食品支出的影响因素的统计分析学号姓名贡献成果 指导老师陈彩霞日期运用spss对我国人均食品支出的影响因素的分析摘要 随着21世纪世界的逐步进展,中国的国力日益强大,人民的生活水品也逐步提高,而人均食品支出也越来越大。这是什么缘由造成的结果呢?因此我们选取了2002年到2012年这十年的数据,对居民消费价格指数(CPI)、人均收入、农产品价格指数对人均食品支出的影响以及恩格尔系数作出了回归分析。从数据上,我们可以发觉人均食品支出、人均收入在逐年增长,且增长的幅度较大,居民消费价格指数与农产品价格指数也在增长,但增长的较慢,而恩格尔系数则几乎没有
2、什么波动。我们依据所选取的数据做出来相对应的模型,并对这些模型进行验证,通过CPI、人均收入、农产品价格指数的变动对人均食品支出的不同影响程度,从而发觉这些因素对人均食品支出的实际状况,并利用这些数据对今后人均食品支出作出猜测。回归模型1:运用多元回归分析,由于自变量之间存在共线性,因此得出农产品价格指数对人均食品支出影响不显著。 (1)回归模型2:运用多元回归的逐步分析法,剔除回归系数未通过0.05的显著检验,保留通过的,得到“最优”回归方程。 (2)关键字:回归分析 逐步回归 人均食品支出 人均收入 CPI 农产品价格指数 1、 引言 人均食品支出可以反映人民的消费状况,反映人民的生活水品
3、以及人们对满足生存、进展、享受和需要所达到的程度,更能反映一段时期一个国家的消费水平和进展水品。本问题要求通过收集整理数据,把握对城镇人均消费支出的影响因素,利用spss软件进行多元回归分析,求出回归方程,进行统计检验(包括回归方程的显著性检验,回归系数的显著性检验)以及残差的检验;然后进行估量和猜测。2、 多元线性回归理论基础2.1 多元线性回归的概念 设自变量的观测值及因变量对应的观测值满足关系式 (3) 式中,是相互独立且都听从正态分布的随机变量。依据最小二乘法,由n个观测值确定参数的估量值后,得到公式的估量值称为多元线性回归方程。建立多元线性回归方程的过程以及对回归方程与回归数所做的显
4、著性检验,称为多元线性回归分析或多元线性回归。假如将带入多元线性回归方程,记,则与之间的偏差平方和,由 可得到多元线性回归的正规方程组。通过解正规方程组,即可以算出求出回归方程。2.2 回归方程的显著性检验与一元线性回归方程相类似,多元线性回归方程的总平方和SST也可以分解为剩余平方和SSE和回归平方和SSR,即SST=SSR+SSE (4) 式中, 而,因此 假如SSR的数值较大,SSE的数值便比较小,说明回归的效果好。假如SSR的数值较小,SSE的数值便比较大,说明回归的效果差。理论上已经证明:当原假设为,并且成立时,且SSR与SSE相互独立, (5) (6)为的无偏估量。因此,给出显著性
5、水平,即可进行回归方程的显著性检验。2.3 回归系数的显著性检验 一个多元线性回归方程显著,并不表示方程中的每一个自变量对因变量的影响都是重要的。因此为了对的重要程度作出比较与检验,有必要找出一个与有关的统计量。由于是随机变量的线性函数,各都听从正态分布,所以式中,是正规方程组的系数矩阵的逆矩阵中第行第列的元素。还可以证明,与SSE相互独立。当原假设为并且成立时,由听从分布,推出 (7) 因此,给出显著性水平,即可进行回归常数与回归系数的显著性检验,得到各个是否显著的结论。2.4 多元线性回归的估量与猜测 与一元线性回归方程类似,多元线性回归方程的应用也包括点猜测和区间猜测等内容。当,且统计量
6、,为为正规方程组的逆矩阵中第k行第j列的元素,因此,当n比较大,与与比较接近时,的方差比较小,用猜测的效果比较好。作区间猜测时,统计量 (8)式中,MSE=,由置信水平求出P|t|<=中的临界值后,若记 (9)则P=,便是时的猜测区间,而为区间的半径。当n比较大,比较接近时, (10)3、 数据来源及符号说明3.1 数据来源 全部的数据均来自中国统计年鉴2002-2012年十年的数据,如下:年份人均食品支出人均收入CPI折合的CPI(以2001年=100)农产品生产价格指数折合的农产品价格指数恩格尔系数20022271.84 8177.40 99.299.299.799.737.7200
7、32416.92 9061.22 101.2100.39104.4104.937.120042709.60 10128.51 103.9104.31113.1117.7237.720052914.39 11320.77 101.8106.18101.4119.3736.720063111.92 12719.19 101.5107.78101.2120.835.820073628.03 14908.61 104.8112.95118.5143.1536.320084259.81 17067.78 105.9119.61114.1163.3437.920094478.54 18858.09 99.
8、3118.7897.6159.4236.520104804.71 21033.42 103.3122.7110.9176.7935.720115506.33 23979.20 105.4129.32116.5205.9636.320126040.85 26958.99 102.6132.68102.7211.5236.23.2 符号说明.表示人均食品支出.表示人均收入.表示居民消费价格指数(CPI).表示农产品价格指数.恩格尔系数恩格尔系数表示是食品支出总额占个人消费支出总额的比重。4、 回归方程的建立及检验4.1 多元回归分析直接进入法 以人均收入、居民消费价格指数、农产品价格指数,恩格尔系
9、数为方程的自变量,人均食品支出为因变量,利用spss做回归分析,得到回归系数等表,比较Sig.与0.05的大小关系,得出自变量与因变量的关系是否显著,而则可以看出回归方程所拟合的效果是否好。4.1.1 spss所产生的结果 表1模型汇总b模型RR 方调整 R 方标准 估量的误差11.000a1.0001.00023.48677a. 猜测变量: (常量), x4, x3, x1, x2。b. 因变量: y 上面所定义模型表示:确定系数的平方根()为1.000,确定系数()为1.000,调整后的确定系数为1.000,标准误差为23.48677。值越大所反映的自变量与因变量的共变量比率越高,模型与数
10、据的拟合程度越好。 表2Anovab模型平方和df均方FSig.1回归16324741.62344081185.4067398.434.000a残差3309.7706551.628总计16328051.39210a. 猜测变量: (常量), x4, x3, x1, x2。b. 因变量: y 方差分析表:列出了变异源,自由度,均方,F值及对F的显著性检验。回归平方和为16324741.623,残差平方和3309.770,F统计量的值为7398.434,Sig<0.05,可以认为所建立的回归方程有效。 表3系数a模型非标准化系数标准系数tSig.共线性统计量B标准 误差试用版容差VIF1(常
11、量)-4937.552771.548-6.400.001x1.160.013.79012.140.000.008125.344x236.3688.210.3264.430.004.006160.407x3-3.0702.303-.094-1.333.231.007146.829x469.03414.973.0424.610.004.4092.445a. 因变量: y 回归系数表:列出了常数及回归系数的值及标准化的值,同时对其进行显著性检验。 因变量y对四个自变量的回归的非标准化回归系数分别为0.160,36.368, -3.070,69.034;对应的显著性检验的t值分别为12.140,4.4
12、30,-1.333,4.610四个回归系数.又由于的Sig.值为0.231大于0.05,所以对y不显著,而其余的变量均小于0.05,所以与y显著,所以得到回归方程: (11)猜测值的标准差可以用剩余均方估量: (12)4.1.2 对回归方程进行统计检验 表4Anovab模型平方和df均方FSig.1回归16324741.62344081185.4067398.434.000a残差3309.7706551.628总计16328051.39210a. 猜测变量: (常量), x4, x3, x1, x2。b. 因变量: y(1)回归方程的显著性检验(F检验):若F值较大,说明自变量造成的因变量的变
13、动远远大于随机因素对因变量造成的影响。此外,F统计量也能反映回归方程的拟合优度。若回归方程的拟合优度高,F统计量月显著;F统计量越高;回归方程的拟合优度越高。F检验中,假设是设各个系数=0.即各个自变量与因变量无线性关系。若F>(显著性水平),则拒绝原假设,认为全部回归系数同时与0有显著差异,自变量与因变量之间存在显著的线性关系,自变量的变化的确能反映因变量的线性变化,回归方程显著,若F<(显著性水平),接受原假设,认为全部回归系数同时与0无显著性差异,自变量与因变量之间不存在显著的线性关系,自变量的变化无法反映因变量的线性变化,回归方程不显著。所以,取检验水平=0.05,查,而F
14、=7398.434>,所以回归。(2) 回归系数的显著性检验(t检验): 表5系数a模型非标准化系数标准系数tSig.共线性统计量B标准 误差试用版容差VIF1(常量)-4937.552771.548-6.400.001x1.160.013.79012.140.000.008125.344x236.3688.210.3264.430.004.006160.407x3-3.0702.303-.094-1.333.231.007146.829x469.03414.973.0424.610.004.4092.445a. 因变量: y回归系数的显著性检验是检验各个自变量对因变量y的影响是否显著,
15、从而找出哪些自变量对y的影响是重要的,哪些是不重要的。假设为:。若令假设成立,说明对因变量y具有显著的影响。接受t检验。若|t|>或者p<a,拒绝原假设,认为该回归系数与0有显著差异,该自变量与因变量之间存在显著的线性关系,它的变化的确能较好地反映因变量的线性变化,应当保留在回归方程中。若|t|<或者p>a,接受原假设,认为该回归系数与0无显著差异,该自变量与因变量之间不存在显著的线性关系,它的变化无法反映因变量的线性变化,应当剔除出回归方程中,所以后续应接受逐步回归分析,得出最优的回归方程。在此回归系数表中,t为回归系数检验统计量,Sig为相伴概率值p,p(常量)=0
16、.001<0.05,p()=0.000<0.05,p()=0.004<0.05,p()=0.231>0.05,p()=0.004<0.05,说明的回归系数不显著,没有意义,其余的系数都显著。(3)共线性诊断 表6共线性诊断a模型维数特征值条件索引方差比例(常量)x1x2x4111.9351.000.03.032.0655.464.97.97212.9301.000.00.00.002.0706.485.00.02.0038.013E-5191.2271.00.981.00313.9111.000.00.00.00.002.0896.628.00.01.00.003
17、.000166.606.68.01.00.7446.938E-5237.422.31.981.00.26a. 因变量: y 上表可以显示共线性较大,所以要接受逐步回归法,弃掉一些共线大的数据,得到最优的回归方程。4.2 逐步回归分析4.2.1用spss进行逐步回归分析的结果: 逐步回归每一步进入或剔除回归模型中的变量状况,是依据移入变量的准则,模型一移入变量x1,模型二多加入移入变量x2,模型三再加如变量x4。 表7模型汇总d模型RR 方调整 R 方标准 估量的误差Durbin-Watson1.998a.997.99676.8209621.000b.999.99943.9002831.000c
18、1.0001.00024.757692.451a. 猜测变量: (常量), x1。b. 猜测变量: (常量), x1, x2。c. 猜测变量: (常量), x1, x2, x4。d. 因变量: y 上表是逐步回归模型整体拟合效果的概述:R 是相关系数;R方是相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);调整后的R方为 调整后的判定系数;最终一栏是估量标准误差。第三个模型的拟合优度系数为1.000,反映了因变量与自变量之间具有高度显著的线性关系,表中还给出了杜宾-瓦特森检验值DW=2.451,杜宾-瓦特森检验统计量DW是一个用于检验一阶变
19、量自回归形式的序列相关问题统计量,DW在数值2到4之间的四周说明模型变量无序列相关。 表8Anovad模型平方和df均方FSig.1回归16274938.248116274938.2482757.781.000a残差53113.14595901.461总计16328051.392102回归16312633.51928156316.7594232.136.000b残差15417.87481927.234总计16328051.392103回归16323760.78935441253.5968877.253.000c残差4290.6047612.943总计16328051.39210a. 猜测变量:
20、 (常量), x1。b. 猜测变量: (常量), x1, x2。c. 猜测变量: (常量), x1, x2, x4。d. 因变量: y上表是逐步回归每一步的回归模型的方差分析,给出了每一步的回归及残差的平方和,自由度,均方,F值和Sig(显著性概率),显著性概率是0.000(格外小),表明回归极显著,也就是说因变量与自变量的线性关系明显。 表9已排解的变量d模型Beta IntSig.偏相关共线性统计量容差VIF最小容差1x2.401a4.423.002.842.01469.795.014x3.281a2.678.028.687.01951.315.019x4.056a4.301.003.83
21、6.7151.398.7152x3.052b.422.686.157.009117.040.006x4.036b4.261.004.850.5131.949.0103x3-.094c-1.333.231-.478.007146.829.006a. 模型中的猜测变量: (常量), x1。b. 模型中的猜测变量: (常量), x1, x2。c. 模型中的猜测变量: (常量), x1, x2, x4。d. 因变量: y上表为各个模型中排出的变量。 表10系数a模型非标准化系数标准系数tSig.共线性统计量B标准 误差试用版容差VIF1(常量)619.60065.3959.475.000x1.203.
22、004.99852.515.0001.0001.0002(常量)-3201.503864.806-3.702.006x1.122.018.6006.609.000.01469.795x244.76710.122.4014.423.002.01469.7953(常量)-4165.603537.644-7.748.000x1.153.013.75512.017.000.010105.210x229.5016.740.2654.377.003.01097.291x460.04114.092.0364.261.004.5131.949a. 因变量: y上表是逐步回归每一步的回归方程系数表。建立回归模型
23、:依据多元线性回归模型: (13)过程一共运行了三步,最终一步以就是表中的第3步的计算结果得知:4个变量中只进入了3个变量x1,x2,x4。把表中“非标准化回归系数”栏目中的“B”列数据代入多元回归模型得到预报方程: (14)4.2.2回归方程的显著性检验: 由上表8模型中的数据的F值知F=8877.253,系统自动检验的显著性水平位0.000(格外小),查表知F(0.05,3,7)=4.35,而F=8877.253>,所以回归方程是显著的。4.2.3回归方程系数的检验: 在以上系数表中,t为回归系数检验统计量,Sig为相伴概率值p,p(常量)=0.000<0.05,p()=0.0
24、00<0.05,p()=0.003<0.05, p()=0.004<0.05,说明系数都显著。4.3 残差检验 前面我们已经就方程拟合好坏、回归方程的线性性以及参数的显著性进行了建模分析。在回归分析中还有一项很重要的检验需要进行,这就是下面要介绍的残差分析。在回归分析中,测定值与按回归方程猜测的值之差即为残差,以表示。残差遵从正态分布N(0,)。(-残差的均值)/残差的标准差,称为标准化残差,以表示。遵从标准正态分布N(0,1)。试验点的标准化残差落在(-2,2)区间以外的概率0.05。若某一试验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为特别试验点,不参与回归直线拟合。明显,有多少对数据,就有多少个残差。残差分析就是通过残差所供应的信息,分析出数据的牢靠性、周期性或其它干扰。 图1残差向量如则同学化残差假如样本回归模型对数据拟合是良好的话,那么.4.3.1 残差的正态性检验 图2 图3由以上分别为残差的直方图和累积概率图(P-P图),其中直方图的分布为正太分布,而累积概率图可以看出点存在于直线的四周,构成线性的关系,这是对残差的正态性检验,可以由图像得到残差是具有正态性的。4.3.2 残差的独立性检验用Durbin-Watson检验,其参数称为D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CACEM 25-2023高速公路限速标志设置规范
- T/CACEM 21-2019钢质无焊接防眩栅
- 2025年食品行业节能减排技术发展趋势与产业布局报告
- 新能源汽车充电设施布局优化策略与2025年充电设备维护与升级效率研究报告
- 人格特质课件下载
- 车工工艺与技能训练(第二版)课件:车外圆、端面和台阶
- 文旅地产项目2025年新型城镇化背景下的开发策略研究报告
- 普外科护理学习读后感
- 透析患者脑出血护理问题和措施
- 大学生创业设计书
- 人工智能导论学习通超星期末考试答案章节答案2024年
- 人工智能通识教程 第2版 课件全套 周苏 第1-15章 思考的工具- 人工智能发展
- 2024年河南住院医师-河南住院医师口腔科考试近5年真题集锦(频考类试题)带答案
- 2024小红书影像赛道赚钱趋势详解
- 《液压传动与气动技术》课后习题答案(大学期末复习资料)
- 2024年生态环境执法大练兵比武竞赛理论考试题库-上(单选题)
- 大学生网络安全教育筑牢安全网络防线课件
- DB11-T854-2023占道作业交通安全设施设置技术要求
- (高清版)WS∕T 389-2024 医学X线检查操作规程
- 运输企业安全生产责任制制度
- GB/T 8492-2024一般用途耐热钢及合金铸件
评论
0/150
提交评论