全等三角形之旋转与截长补短专题_第1页
全等三角形之旋转与截长补短专题_第2页
全等三角形之旋转与截长补短专题_第3页
全等三角形之旋转与截长补短专题_第4页
全等三角形之旋转与截长补短专题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上三角形全等问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件)问题二:旋转都有哪些模型?【例1】如图,P是正ABC内的一点,若将PBC绕点B旋转到PBA ,则PBP的度数是( ) A45°B60° C90° D120° 【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BDCF并求出DOH的度数。【例3】如图,正方形ABCD中,FADFAE 。求证:BEDFAE。1题干中出现对图形的旋转现成的全等2图形中隐藏着旋转位置关系的全等形找到并利用3题干中没提到旋转,图形中也没有旋转关系存在通过作辅

2、助线构造旋转!【例4】已知:如图:正方形ABCD中,MAN45°,MAN的两边分别交CB、DC于点M、N。求证:BMDNMN。【例5】如图,正方形ABCD中,EAF45°,连接对角线BD交AE于M,交AF于N,证明:DN2BM2MN2 【例6】如图,已知OAB和OCD是等边三角形,连结AC和BD,相交于点E,AC和BO交于点F,连结BC。求AEB的大小。 【例7】如图所示:ABC中,ACB90°,ACBC,P是ABC内的一点,且AP3,CP2, BP1,求BPC的度数。本课总结问题一:题中出现什么的时候,我们应该想到旋转?(构造旋转的条件) 1图中有相等的边(等腰

3、三角形、等边三角形、正方形、正多边形) 2这些相等的边中存在共端点。3如果旋转(将一条边和另一条边重合),会出现特殊的角:大角夹半角、手拉手、被分割的特殊角。问题二:旋转都有哪些模型?构造旋转辅助线模型:1大角夹半角2手拉手(寻找旋转) 3被分割的特殊角在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。1如图,P是正内的一点,且BP是ABC的角平分线,若将绕点P旋转到,则的度数是( )A45°B60°C90°D120° 2如图:ABC中,ABAC,BC为最大边,点D、E分别在BC、AC上,BDCE,F为BA延长线上一点,BFCD,则下列正确的是

4、( )ADFDE BDCDFCECEAD不确定3如图,四边形ABCD中,ABC30°,ADC60°,ADDC,则下列正确的是( )ABD2AB2BC2 BBD2AB2BC2CBD2AB2BC2 D不确定4已知中,于,AE为角平分线交CD于F,则图中的直角三角形有( )A7个B6个C5个D4个5如图,DAAB,EAAC,ADAB,AEAC,则下列正确的是( )ABCD6如图,已知P为正方形ABCD的对角线AC上的一点(不与A、C重合),PEBC与点E,PFCD与点F,若四边形PECF绕点C逆时针旋转,连结BE、DF,则下列一定正确的是( )ABPDPBBE2EC2BC2CBP

5、DFDBEDF7如图,等腰直角ADB与等腰直角AEC共点于,连结、,则下列一定正确的是( )ABEDCBADCECBECEDBECE8如图,等边三角形与等边三角形共点于,连接、,则的度数为( )A45°B60° C90°D120° 9如图,在四边形中,、分别是边、上的点,且。则下列一定正确的是( )A BC D10在正方形ABCD中,BE3,EF5,DF4,则BAEDCF为( )A45°B60° C90°D120°遇到失意伤心事,多想有一个懂你的人来指点迷津,因他懂你,会以我心,换你心,站在你的位置上思虑,为你排优

6、解难。一个人,来这世间,必须懂得一些人情事理,才能不断成长。就像躬耕于陇亩的农人,必须懂得土地与种子的情怀,才能有所收获。一个女子,一生所求,莫过于找到一个懂她的人,执手白头,相伴终老。即使芦花暖鞋,菊花枕头,也觉温暖;即使粗食布衣,陋室简静,也觉舒适,一句“懂你”,叫人无怨无悔,愿以自己的一生来交付。懂得是彼此的欣赏,是灵魂的轻唤,是惺惺相惜,是爱,是暖,是彼此的融化;是走一段很远的路,蓦然回首却发现,我依然在你的视线里;是回眸相视一笑的无言;是一条偏僻幽静的小路,不显山,不露水,路边长满你喜爱的花草,静默无语却馨香盈怀,而路的尽头,便是通达你心灵的小屋瑟瑟严冬,窗外雪飘,絮絮自语说了这多,你可懂我了吗?若你知晓,无需说话,只报一声心灵的轻叹,那,便是我的花开春

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论