排列组合和概率二项式定理220041214_第1页
排列组合和概率二项式定理220041214_第2页
排列组合和概率二项式定理220041214_第3页
排列组合和概率二项式定理220041214_第4页
排列组合和概率二项式定理220041214_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课 题:104二项式定理(二)教学目的:1进一步熟悉二项式定理及二项展开式的通项公式,并能灵活的应用; 2.展开式中的第项的二项式系数与第项的系数是不同的概念教学重点:二项式定理及二项展开式的通项公式的灵活运用教学难点:二项式定理及二项展开式的通项公式的灵活运用授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1二项式定理及其特例:(1),(2).2二项展开式的通项公式: 二、讲解范例:例1(1)求的展开式的第四项的系数;(2)求的展开式中的系数及二项式系数解:的展开式的第四项是,的展开式的第四项的系数是(2)的展开式的通项是,的系数,的二项式系数例2求

2、的展开式中的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一),显然,上式中只有第四项中含的项,展开式中含的项的系数是(法二):展开式中含的项的系数是例3已知 的展开式中含项的系数为,求展开式中含项的系数最小值分析:展开式中含项的系数是关于的关系式,由展开式中含项的系数为,可得,从而转化为关于或的二次函数求解解:展开式中含的项为,即,展开式中含的项的系数为, ,当时,取最小值,但, 时,即项的系数最小,最小值为,此时例4已知的展开式中,前三项系数的绝对值依次成等差

3、数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:,即,舍去) 若是常数项,则,即,这不可能,展开式中没有常数项;若是有理项,当且仅当为整数, ,即 展开式中有三项有理项,分别是:, 三、课堂练习:1展开式中常数项是( )A.第4项 B. C. D.22(x1)11展开式中x的偶次项系数之和是( )A.-2048 B.-1023 C.-1024 D.10243展开式中有理项的项数是( )A.4 B.5 C.6 D.74设(2x-3)4=,则a0+a1+a2+a3的值为( ) A.1 B.16 C.-15 D.155展开式中的中间两项为( )A. B. C. D.6在

4、展开式中,x5y2的系数是 7 8. 的展开式中的有理项是展开式的第 项9(2x-1)5展开式中各项系数绝对值之和是 10展开式中系数最大的项是 答案:1通项,由,常数项是,选(B)2设f(x)=(x-1)11, 偶次项系数之和是,选C3通项,当r=0,2,4,6时,均为有理项,故有理项的项数为4个,选(A)4.C 5.C 6.; 7.; 8.3,9,15,21 9(2x-1)5展开式中各项系数系数绝对值之和实为(2x+1)5展开式系数之和,故令x=1,则所求和为3510(1+3x+3x2+x3)10=(1+x)30中的系数就是二项式系数,系数最大的项是T16=.四、小结 :1三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性;2求常数项、有理项和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论