




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的乘法与因式分解复习学案一、 整式的乘法(一)幂的乘法运算一、知识点讲解:1、同底数幂相乘: 推广:(都是正整数)2、幂的乘方: 推广:(都是正整数) 3、积的乘方: 推广:二、典型例题:例1、(同底数幂相乘)计算:(1) (2) (3) (4)变式练习:1、a16可以写成( ) Aa8+a8 Ba8·a2 Ca8·a8 Da4·a42、已知那么的值是 。3、计算:(1) a a3a5 (2) (3) (4)(x+y)n·(x+y)m+1 例2、(幂的乘方)计算:(1)(103)5 (2) (3) (4) 变式练习:1、计算(x5)7+(x7)5的结
2、果是( ) A2x12 B2x35 C2x70 D02、在下列各式的括号内,应填入b4的是( ) Ab12=( )8 Bb12=( )6 Cb12=( )3 Db12=( )23、计算:(1) (2) (3) (4)(m3)4+m10m2+m·m3·m8 例3、(积的乘方)计算:(1)(ab)2 (2)(3x)2 (3) (4) (5)变式练习:1、如果(ambn)3=a9b12,那么m,n的值等于( )Am=9,n=4 Bm=3,n=4 Cm=4,n=3 Dm=9,n=62、下列运算正确的是( ) (A) (B) (C) (D)3、已知xn=5,yn=3,则(xy)3n=
3、 。4、计算:(1)(a)3 (2)(2x4)3 (3)(4) (5) (6) (二)整式的乘法一、知识点讲解:1、单项式单项式(1)_作为积的系数(2)相同字母的因式,利用同底数幂的乘法,作为一个因式(3)单独出现的字母,连同它的指数,作为一个因式注意点:单项式与单项式相乘,积仍然是_2、单项式多项式单项式分别乘以多项式的各项;将所得的积相加注意:单项式与多项式相乘,积仍是一个多项式,项数与多项式的项数相同3、多项式多项式先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。注意:运算的结果一般按某一字母的降幂或升幂排列。二、典型例题:例1、计算:(1) (2) (3)(x-
4、3y)(x+7y) (4)变式练习:1、计算:(1)(4xm1z3)·(2x2yz2) (2) (2a2b)2(ab2a2ba2) (3)(x+5)(x-7) (4) 2、先化简,后求值:(x4)(x2)(x1)(x3),其中。3、一个长80cm,宽60cm的铁皮,将四个角各裁去边长为bcm的正方形,做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积。(三)乘法公式一、知识点讲解:1、平方差公式: ; 变式:(1) ; (2) ;(3)= ; (4)= 。2、完全平方公式:= 。 公式变形:(1)(2); (3) (4); (5)二、典型例题:例2、计算:(1
5、)(x2)(x2) (2)(5a)(-5a) (3) (4) (5) (6) 变式练习:1、直接写出结果:(1)(xab)(xab)= ; (2)(2x5y)(2x5y)= ;(3)(xy)(xy)= ;(4)(12b2)(b212)_ ; (5) (-2x+3)(3+2x)= ;(6)(a5-b2)(a5+b2)= 。2、在括号中填上适当的整式:(1)(mn)( )n2m2;(2)(13x)( )19x23、如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是 。4、计算:(1) (2) (3) (4)(
6、m2n2)(m2n2)5、已知,求的值。例3、填空:(1)x210x_( 5)2;(2)x2_16(_4)2;(3)x2x_(x_ )2; (4)4x2_9(_3)2例4、计算:(1) (2)(x+)2 (3) (4) 例5、已知,求;例6、化简求值,其中:。变式练习:1、设,则P的值是( ) A、 B、 C、 D、2、若是完全平方式,则k= 3、若a+b=5,ab=3,则= .4、若,则代数式的值为 。5、利用图形中面积的等量关系可以得到某些数学公式例如,根据图甲,我们可以得到两数和的平方公式:,你根据图乙能得到的数学公式是 。6、已知:7、计算:(1)(3a+b)2 (2)(3x25y)2
7、 (3)(5x-3y)2 (4)(4x37y2)2 (5)(3mn5ab)2 (6) (abc)28、化简求值:,其中9、已知,求下列各式的值:(1);(2)。三、巩固练习:A 组一、选择题1、下列各式运算正确的是( )A. B. C. D. 2、计算的结果是( )A. B. C. D.3、计算的结果正确的是( )A. B. C. D.4、如图,阴影部分的面积是( )A B C D5、的计算结果是( )A. B. C. D.6、28a4b2÷7a3b的结果是( )(A)4ab2 (B)4a4b (C)4a2b2 (D)4ab7、下列多项式的乘法中,不能用平方差公式计算的是( ) A、
8、 B、 C、 D、8、下列计算正确的是( ) A、 B、 C、 D、二、填空题1、如果,那么= 。2、已知是一个完全平方式,则a= 。3、若,且,则的值是_4、若a+b=m,ab=-4 化简(a-2)(b-2)= 。5、已知:。6、一个正方形的边长增加了,面积相应增加了,则这个正方形的边长为 。三、解答题1、计算:(1) (2)(3xy2)3·(x3y)2 (3) (4)( (5) (6) (7) (15x)2(5x1)2 (8)2、先化简,后求值:,其中a=,b。3、方体游泳池的长为,宽为高为那么这个游泳池的容积是多少?4、已知是ABC的三边的长,且满足,试判断此三角形的形状三、因
9、式分解一、知识点讲解:1、定义:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解。2、因式分解的方法:(1)提公因式法(2)公式法:平方差公式: 完全平方公式:(3)十字相乘法:= 。3、因式分解一般思路:先看有无公因式,在看能否套公式 首先提取公因式,无论如何要试试 提取无比全提出,特别注意公约数 公因提出后计算,因式不含同类项 同类合并后看看,是否再有公因现 无公考虑第二关,套用公式看项数 项数多少算一算,选准公式是关键 二项式,平方差,底数相加乘以差 无差交换前后项, 奇迹可能就出现 三项式,无定法,完全平方先比划 前平方,后平方,还有两倍在中央二、典型例题:
10、例1、分解因式:(1)x22x3 (2)3y36y23y(3) (4)3x(mn)2(mn) 变式练习:1、分解因式:(1)12ab6b (2)xx (3)5x2y10xy215xy (4)2、应用简便方法计算:(1)2012201(2)4.3×199.87.6×199.81.9×199.8例2、分解因式:(1)4a29b2 (2) (3) (4)变式练习:分解因式:(1) (2)25a24 (3) (4) 例3、分解因式:(1)a3ab2 (2)变式练习:分解因式:(1)m34m (2) (3) (4) (5) (6)2a2 4a + 2 (7) (8) 例4、
11、在实数范围内分解因式:(1) (2)例5、给出三个整式,和(1)当a=3,b=4时,求的值;(2)在上面的三个整式中任意选择两个整式进行加法或减法运算,使所得的多项式能够因式分解请写出你所选的式子及因式分解的过程变式练习:现有三个多项式:,请你选择其中两个进行加法运算,并把结果因式分解三、巩固练习:A 组一、选择题1、下列各式变形中,是因式分解的是( )Aa22abb21(ab)21 C(x2)(x2)x24 Dx41(x21)(x1)(x1)2、将多项式6x3y2 3x2y212x2y3分解因式时,应提取的公因式是( )A3xyB3x2y C3x2y2D3x3y33、把多项式提取公因式后,余下的部分是( )A B C D4、下列多项式能用平方差公式分解因式的是( ) A、 B、 C、 D、5、下列多项式中,能用公式法分解因式的是( )(A) (B) (C) (D)6、把代数式 分解因式,结果正确的是( )A B C D7、将a210a16因式分解,结果是( )A(a2)(a8) B(a2)(a8) C(a2)(a8) D(a2)(a8)8、下列分解因式正确的是( ) A. B. C. D.二、填空题1、把下列各式进行因式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省成都市青白江区2024-2025学年三下数学期末学业质量监测试题含解析
- 台州科技职业学院《文化产业经营案例分析》2023-2024学年第二学期期末试卷
- 苏州科技大学《给排水工程结构》2023-2024学年第二学期期末试卷
- 江西省景德镇市2025届初三第一次中考适应性性考试数学试题含解析
- 江苏省无锡市宜兴市丁蜀区市级名校2025届初三考前热身数学试题试卷含解析
- 济南市市中区2025届六年级下学期小升初数学试卷含解析
- 2025年中级经济师考试试卷及答案
- 山东科技职业学院《现代交换技术与网络》2023-2024学年第二学期期末试卷
- 南宁师范大学师园学院《拓展英语》2023-2024学年第一学期期末试卷
- 萍乡学院《物理化学Ⅰ(上)》2023-2024学年第二学期期末试卷
- 警察小学生安全教育讲座
- 分期还款协议书模板示例
- 幼升小公有住宅租赁合同(2篇)
- 彩票大数据预测分析
- 4.1基因指导蛋白质的合成(第1课时)高一下学期生物人教版必修2
- (完整)老旧小区改造施工组织设计
- 2024-2030年中国科技服务行业发展前景及投资策略分析研究报告
- 《城市轨道交通》课件
- 建筑工程材料取样送检一览表
- 电梯安装挂靠合同
- 婚姻家庭继承法期末考试复习题及参考答案
评论
0/150
提交评论