第3章 3.1 数系的扩充_第1页
第3章 3.1 数系的扩充_第2页
第3章 3.1 数系的扩充_第3页
第3章 3.1 数系的扩充_第4页
第3章 3.1 数系的扩充_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.3.1数系的扩大1.理解复数的根本概念、复数的代数表示.重点2.利用复数的代数形式进展分类和复数相等的充要条件的应用.重点、难点3.实部、虚部的概念.易混点根底·初探教材整理1复数的相关概念阅读教材P109P110“例1以上部分,完成以下问题.1.虚数单位我们引入一个新数i,叫做虚数单位,并规定:1i21;2实数可以与i进展四那么运算,进展四那么运算时,原有的加法、乘法运算律仍然成立.2.复数、复数集1形如abia,bR的数叫做复数,全体复数所组成的集合叫做复数集,记作C.2复数zabia,bR,其中a与b分别叫做复数z的实部与虚部.判断正误:1假设a,b为实数,那么zabi为虚数

2、.2假设a为实数,那么za一定不是虚数.3bi是纯虚数.4假如两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.【答案】1×23×4教材整理2复数的分类与复数相等阅读教材P110,完成以下问题.1.复数的分类复数zabia,bR,当且仅当b0时,z是实数;当b0时,z叫做虚数;当a0且b0时,zbi叫做纯虚数.2.复数相等的充要条件设a,b,c,d都是实数,那么abicdiac且bd.1.假设aR,那么a1i是纯虚数;假设x21x23x2ixR是纯虚数,那么x±1;两个虚数不能比较大小.其中正确命题的序号是_.填序号【解析】当a1时,a1i0,故错误;两个

3、虚数不能比较大小,故对;假设x21x23x2i是纯虚数,那么即x1,故错.【答案】2.假设xii2y2i,x,yR,那么复数xyi_. 【导学号:01580058】【解析】由i21得xii21xi,即1xiy2i,根据两个复数相等的充要条件得故xyi2i.【答案】2i质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们讨论交流:疑问1:_解惑:_疑问2:_解惑:_疑问3:_解惑:_小组合作型复数的相关概念1复数z43i的实部和虚部分别是_和_.2复数zm23m2m2m2i,当实数m为何值时,z为实数;z为虚数;z为纯虚数.3当实数m为何值时,复数zm22mi为:实数;虚数;纯虚数.

4、【自主解答】1由复数的代数形式及实、虚部的概念知,复数z的实部和虚部分别为4和3.【答案】432当m2m20,即m2或m1时,z为实数.当m2m20,即m2且m1时,z为虚数.当即m2时,z为纯虚数.3当即m2,当m2时,复数z是实数.当m22m0,且m0,即m0且m2时,复数z是虚数.由解得m3,当m3时,复数z是纯虚数.判断与复数有关的命题是否正确的方法1.举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这类题型时,可按照“先特殊,后一般,先否认,后肯定的方法进展解答.2.化代数式:对于复数实部、虚部确实定,不但要把复数化为abi的形式,更要注意这里a,b均为实数时,才能确定复数

5、的实、虚部.再练一题1.以下命题中是假命题的是_.填序号自然数集是非负整数集实数集与复数集的交集为实数集实数集与虚数集的交集是0纯虚数集与实数集的交集为空集【解析】复数可分为实数和虚数两大部分,虚数中含有纯虚数,因此,实数集与虚数集没有公共元素,是假命题.【答案】复数的分类及应用1复数za2b2a|a|ia,bR为纯虚数的充要条件是_. 【导学号:01580059】2mR,复数zm22m3i,当m为何值时,z为实数;z为虚数;z为纯虚数.【精彩点拨】根据复数的分类列出方程不等式组求解.【自主解答】1要使复数z为纯虚数,那么a>0,a±b.【答案】a>0且a±b2

6、要使z为实数,需满足m22m30,且有意义,即m10,解得m3.要使z为虚数,需满足m22m30,且有意义,即m10,解得m1且m3.要使z为纯虚数,需满足0,且m22m30,解得m0或m2.利用复数的分类求参数时,要先确定构成实部、虚部的式子有意义的条件,再结合实部与虚部的取值求解.要特别注意复数zabia,bR为纯虚数的充要条件是a0且b0.再练一题2.假设把上例1中的“纯虚数改为“实数,那么结果如何?【解】复数z为实数的充要条件是a|a|0,即|a|a,所以a0.探究共研型复数相等的充要条件探究1a0是复数zabi为纯虚数的充分条件吗?【提示】因为当a0且b0时,zabi才是纯虚数,所以

7、a0是复数zabi为纯虚数的必要不充分条件.探究232i3i正确吗?【提示】不正确,假如两个复数不全是实数,那么它们就不能比较大小.1假设xyyix1i,务实数x,y的值;2关于x的方程3x2x110x2x2i有实根,务实数a的值.【精彩点拨】根据复数相等的充要条件求解.【自主解答】1由复数相等的充要条件,得解得2设方程的实根为xm,那么原方程可变为3m2m110m2m2i,所以解得a11或a.1.复数z1abi,z2cdi,其中a,b,c,dR,那么z1z2ac且bd.2.复数问题实数化是解决复数相等问题最根本的也是最重要的思想方法.转化过程主要根据复数相等的充要条件.根本思路是:1等式两边

8、整理为abia,bR的形式;2由复数相等的充要条件可以得到由两个实数等式所组成的方程组;3解方程组,求出相应的参数.再练一题3.x2y26xy2i0,务实数x,y的值.【解】由复数相等的条件得方程组由得xy2,代入得y22y10.解得y11,y21.所以x1y121,x2y221.即或构建·体系1.复数za22bi的实部和虚部分别是2和3,那么实数a,b的值分别是_.【解析】由题意,得a22,2b3,所以a±,b5.【答案】±,52.假设关于x的方程x212ix3mi0有实数根,那么实数m_.【解析】关于x的方程x212ix3mi0可化为x2x3m2x1i0,方程有实数解.解得m.【答案】3.z1m23mmi,z245m4i,其中mR,i为虚数单位,假设z1z2,那么m的值为_.【解析】由题意得m23mmi45m4i,从而解得m1.【答案】14.复数z1,z2满足z1m4m2i,z22cos 3sin im,R,并且z1z2,那么的取值范围为_.【解析】由复数相等的充要条件可得化简得44cos23sin ,由此可得4cos23sin 441sin23sin 44sin23sin 42,因为sin 1,1,所以4sin2 3sin .【答案】5.集合Ma3b21i,8,集合N3i,a21b2i满足M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论