




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。1.公式的推导设P(,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。证法1:。因为,所以又因为,所以,证法2:设P到左、右准线的距离分别为,由椭圆的第二定义知,又,所以,而。,。2.公式的应用例1 椭圆上
2、三个不同的点A()、B()、C()到焦点F(4,0)的距离成等差数列,则 .解:在已知椭圆中,右准线方程为,设A、B、C到右准线的距离为,则、。,而|AF|、|BF|、|CF|成等差数列。,即,。例2.是椭圆的两个焦点,P是椭圆上的动点,求的最大值和最小值。解:设,则 在椭圆上,的最大值为4,最小值为1.变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB的长度。解:由已知可得,所以直线AB的方程为,代入椭圆方程得设,则,从而变式练习2. 设Q是椭圆上任意一点,求证:以(或)为直径的圆C与以长轴为直径的圆相内切。证明:设,圆C的半径为r 即也就是说:两圆圆心距等于两圆半径之差。故两圆相内切同理可
3、证以为直径的圆与以长轴为直径的圆相内切。3.椭圆焦半径公式的变式P是椭圆上一点,E、F是左、右焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(1);(2)。P是椭圆上一点,E、F是上、下焦点,PE与x轴所成的角为,PF与x轴所成的角为,c是椭圆半焦距,则(3);(4)。证明:(1)设P在x轴上的射影为Q,当不大于90°时,在三角形PEQ中,有 由椭圆焦半径公式(1)得 。消去后,化简即得(1)。而当大于90°时,在三角形PEQ中,有, 以下与上述相同。(2)、(3)、(4)的证明与(1)相仿,从略。4.变式的应用对于椭圆的一些问题,应用这几个推论便可容
4、易求解。例1. (2005年全国高考题)P是椭圆上一点,E、F是左右焦点,过P作x轴的垂线恰好通过焦点F,若三角形PEF是等腰直角三角形,则椭圆的离心率是_。解:因为PFEF,所以由(2)式得 。再由题意得。注意到。例2. P是椭圆上且位于x轴上方的一点,E,F是左右焦点,直线PF的斜率为,求三角形PEF的面积。解:设PF的倾斜角为,则:。因为a10,b8,c6,由变式(2)得 所以三角形PEF的面积变式训练1.经过椭圆的左焦点F1作倾斜角为60°的直线和椭圆相交于A,B两点,若,求椭圆的离心率。解:由题意及变式(2)得化简得。变式训练2.设F是椭圆的上焦点,共线,共线,且0。求四边
5、形PMQN面积的最大值和最小值。解:设PF倾斜角为,则由题意知PFMF,所以MF倾斜角为90°,而,由题意及(3)式得同理得。由题意知四边形PMQN面积当时,;当时,。二 椭圆的焦点弦 设椭圆方程为过椭圆右焦点且倾斜角为的直线方程为,此直线交椭圆于两点,求焦点弦的长.例1、已知椭圆的长轴长,焦距,过椭圆的焦点作一直线交椭圆于、两点,设,当取什么值时,等于椭圆的短轴长? 分析:由题意可知是椭圆的焦点弦,且,从而,故由焦点弦长公式及题设可得:,解得,即或。 例2、在直角坐标系中,已知椭圆E的一个焦点为F(3,1),相应于F的准线为Y轴,直线通过点F,且倾斜角为,又直线被椭圆E截得的线段的长度为,求椭圆E的方程。分析:由题意可设椭圆E的方程为,又椭圆E相应于F的准线为Y轴,故有 (1), 又由焦点弦长公式有 (2)又 (3)。解由(1)、(2)、(3)联列的方程组得:,从而所求椭圆E的方程为。变式训练1、已知椭圆C:(),直线:被椭圆C截得的弦长为,过椭圆右焦点且斜率为的直线被椭圆C截得的弦长是它的长轴长的,求椭圆C的方程。分析:由题意可知直线过椭圆C的长、短轴的两个端点,故有, (1)又由焦点弦长公式得=, (2) 因=,得,(3)又 (4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园防盗安全知识培训课件
- 新测绘法试题及答案
- 校园安防消防知识培训课件
- 防腐廉洁面试题及答案
- 编导运营面试题及答案
- 报账员考试题及答案
- 球馆分级考试题及答案
- 流管员面试题及答案
- 方程运算面试题及答案
- 2025年福建福州工会招聘工会社会工作者考试笔试试题(含答案)
- 2025至2030中国婚庆行业发展趋势分析与未来投资战略咨询研究报告
- 2025年职业病诊断医师资格考试(职业性化学中毒)历年参考题库含答案详解(5卷)
- 2025年安徽高考生物试题及答案
- 2025年高校机房管理试题及答案
- ESG基础知识培训课件
- 泌尿系统常见疾病科普讲座
- 2025年中国南海研究院招聘事业编制人员考试笔试试题
- 山东阿訇管理办法
- 2025广西公需科目真题续集(附答案)
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
评论
0/150
提交评论